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CHAPTER 1

Whalrus

Which Alternative Represents Us, a package for voting rules

• Free software: GNU General Public License v3

• Documentation: https://francois-durand.github.io/whalrus/.

1.1 Features

• TODO

1.2 Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

We use the checklist provided by Package Helper 2.

3
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CHAPTER 2

Installation

2.1 Stable release

To install Whalrus, run this command in your terminal:

$ pip install whalrus

This is the preferred method to install Whalrus, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From sources

The sources for Whalrus can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/francois-durand/whalrus

Or download the tarball:

$ curl -OL https://github.com/francois-durand/whalrus/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

5
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CHAPTER 3

Usage

To use Whalrus in a project:

import whalrus

7
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CHAPTER 4

Tutorial

>>> from whalrus import *

4.1 Quick start

Some simple elections:

>>> RulePlurality(['a', 'a', 'b', 'c']).winner_
'a'
>>> RuleBorda(['a > b > c', 'b > c > a']).gross_scores_
{'a': 2, 'b': 3, 'c': 1}

Elections can optionally have weights and voter names:

>>> RulePlurality(
... ['a', 'a', 'b', 'c'], weights=[1, 1, 3, 2],
... voters=['Alice', 'Bob', 'Cate', 'Dave']
... ).winner_
'b'

The tie-breaking rule can be specified:

>>> RulePlurality(['a', 'a', 'b', 'b', 'c'], tie_break=Priority.ASCENDING).winner_
'a'

4.2 Computed attributes of an election

>>> plurality = RulePlurality(['a', 'a', 'b', 'b', 'c'], tie_break=Priority.
→˓ASCENDING)

9
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Once the election is defined, you can access its computed attributes, whose names end with an underscore:

>>> plurality.candidates_
{'a', 'b', 'c'}
>>> plurality.gross_scores_
{'a': 2, 'b': 2, 'c': 1}
>>> plurality.scores_
{'a': Fraction(2, 5), 'b': Fraction(2, 5), 'c': Fraction(1, 5)}
>>> plurality.best_score_
Fraction(2, 5)
>>> plurality.worst_score_
Fraction(1, 5)
>>> plurality.order_
[{'a', 'b'}, {'c'}]
>>> plurality.strict_order_
['a', 'b', 'c']
>>> plurality.cowinners_
{'a', 'b'}
>>> plurality.winner_
'a'
>>> plurality.cotrailers_
{'c'}
>>> plurality.trailer_
'c'

4.3 General syntax

In the most general syntax, firstly, you define the rule and enter its options:

>>> plurality = RulePlurality(tie_break=Priority.ASCENDING)

Secondly, you use it as a callable to load a particular election (profile, set of candidates):

>>> plurality(ballots=['a', 'b', 'c'], weights=[2, 2, 1], voters=['Alice', 'Bob',
→˓'Cate'],
... candidates={'a', 'b', 'c', 'd'}) # doctest:+ELLIPSIS
<... object at ...>

Finally, you can access the computed variables:

>>> plurality.gross_scores_
{'a': 2, 'b': 2, 'c': 1, 'd': 0}

Later, if you wish, you can load another profile with the same voting rule, and so on.

4.4 Under the hood

A whalrus.Ballot contains the message emitted by the voter, but also some contextual information such as the
set of candidates that were available at the moment when she cast her ballot:

>>> ballot = BallotOrder('a > b ~ c')
>>> ballot
BallotOrder(['a', {'b', 'c'}], candidates={'a', 'b', 'c'})

10 Chapter 4. Tutorial
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This architecture allows Whalrus to deal with asynchronous elections where the set of candidates may vary during the
election itself (such as some asynchronous online polls).

A whalrus.Profile contains a list of whalrus.Ballot objects, a list of weights and a list of voters:

>>> profile = Profile(['a > b ~ c', 'a ~ b > c'])
>>> profile.ballots[0]
BallotOrder(['a', {'b', 'c'}], candidates={'a', 'b', 'c'})
>>> profile.weights
[1, 1]
>>> profile.voters
[None, None]

Internally, a voting rule is always applied to a whalrus.Profile. Hence, if the inputs are given in a “loose”
format, they are converted to a whalrus.Profile:

>>> borda = RuleBorda(['a > b ~ c', 'a ~ b > c'])
>>> borda.profile_converted_ # doctest:+ELLIPSIS
Profile(ballots=[BallotOrder(['a', {'b', 'c'}], candidates={'a', 'b', 'c'}), ...)

Under the hood, some conversions are performed so that a variety of inputs are understood by Whalrus. In the
example above, the first ballot was manually entered as a > b ~ c. In the absence of other information, Whalrus
then considered that only candidates a, b and c were available when this voter cast her ballot. If you want to give more
detailed information, the most general syntax consists in using the constructors of classes whalrus.Profile,
whalrus.Ballot and their subclasses:

>>> a_more_complex_ballot = BallotOrder('a > b ~ c', candidates={'a', 'b', 'c', 'd',
→˓'e'})

The ballot above means that the voter emitted the message ‘a > b ~ c’ in a context where the candidates d and e where
also available, i.e. she deliberately abstained about these two candidates.

4.5 Change the candidates

It is possible to change the set of candidates, compared to when the voters cast their ballots.

>>> profile = Profile(['a > b > c', 'a ~ b > c'])
>>> RulePlurality(profile, candidates={'b', 'c'}).gross_scores_
{'b': 2, 'c': 0}

4.5. Change the candidates 11
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CHAPTER 5

Reference

5.1 Ballot

5.1.1 Ballot

class whalrus.Ballot
A ballot.

The philosophy of this class is to stick as much as possible to the message that the voter emitted, in the context
where she emitted it. For example, consider a range voting setting with candidates a, b, c and a scale of grades
from 0 to 100. If the voter emits a ballot where a has grade 60 and b has grade 30, then the Ballot object
simply records all this: what candidates were present, what was the scale of authorized grades, and what the
voter indicated in her ballot. But, for example:

• It makes no assumption whether the voter prefers a to c. Maybe she did not mention c because she didn’t
like it, maybe because she didn’t know it.

• It makes no assumption about what would be the voter’s ballot with a scale from 0 to 10. Maybe it would
be {'a': 6, 'b': 3}, maybe not.

Ballot converters (cf. ConverterBallot) will be used each time we need an information that is beyond what
the ballot clearly indicated.

candidates
The candidates that were available at the moment when the voter cast her ballot. As a consequence,
candidates must be hashable objects.

Type NiceSet

first(candidates: set = None, **kwargs)→ object
The first (= most liked) candidate. Implementation is optional.

In most subclasses, this method needs some options (kwargs) to solve ambiguities in this conversion. In
some other subclasses, this method may even stay unimplemented.

Parameters

13
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• candidates (set of candidates) – It can be any set of candidates, not necessar-
ily a subset of self.candidates). Default: self.candidates.

• kwargs – Some options (depending on the subclass).

Returns The first (= most liked) candidate, chosen in the intersection of self.candidates
and the argument candidates. Can return None for an “abstention”.

Return type candidate

Examples

Typical example: the ballot was cast in a context where candidates a, b, c, d were declared. Hence self.
candidates == {'a', 'b', 'c', 'd'}. Later, candidate a is removed from the election. Then
we can use this method with the optional argument candidates = {'b', 'c', 'd'} to know who
is the most liked candidate of the voter in this new context.

last(candidates: set = None, **kwargs)→ object
The last (= most disliked) candidate. Implementation is optional.

Cf. first() for more information.

Parameters

• candidates (set of candidates) – It can be any set of candidates, not necessar-
ily a subset of self.candidates). Default: self.candidates.

• kwargs – Some options (depending on the subclass).

Returns The last (= most disliked) candidate, chosen in the intersection of self.
candidates and the argument candidates. Can return None for an “abstention”.

Return type candidate

restrict(candidates=None, **kwargs)→ whalrus.ballots.ballot.Ballot
Restrict the ballot to less candidates.

Implementation is optional.

Additional candidates (that are in the argument candidates but not in self.candidates) are gen-
erally not taken into account in the restricted ballot. For example, in a election with candidates a, b, c,
assume that the voter emits an ordered ballot a > b > c. Later, candidate a is removed and candidate d
is added. Then the “restricted” ballot to {'b, 'c', 'd'} is b > c. For more details, see for example
BallotOrder.restrict().

Parameters

• candidates (set of candidates) – It can be any set of candidates, not necessar-
ily a subset of self.candidates). Default: self.candidates.

• kwargs – Some options (depending on the subclass).

Returns The same ballot, “restricted” to the candidates given.

Return type Ballot

5.1.2 BallotOrder

class whalrus.BallotOrder(b: object, candidates: set = None)
Ballot with an ordering.

Parameters

14 Chapter 5. Reference
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• b (object) – The ballot. Cf. examples below for the accepted formats.

• candidates (set) – The candidates that were available at the moment when the voter
cast her ballot. Default: candidates that are explicitly mentioned in the ballot b.

Examples

Most general syntax:

>>> ballot = BallotOrder([{'a', 'b'}, {'c'}], candidates={'a', 'b', 'c', 'd', 'e'}
→˓)
>>> ballot
BallotOrder([{'a', 'b'}, 'c'], candidates={'a', 'b', 'c', 'd', 'e'})
>>> print(ballot)
a ~ b > c (unordered: d, e)

In the example above, candidates a and b are equally liked, and they are liked better than c. Candidates d and e
were available when the voter cast her ballot, but she chose not to include them in her preference order.

Other examples of inputs:

>>> BallotOrder('a ~ b > c')
BallotOrder([{'a', 'b'}, 'c'], candidates={'a', 'b', 'c'})
>>> BallotOrder({'a': 10, 'b': 10, 'c': 7})
BallotOrder([{'a', 'b'}, 'c'], candidates={'a', 'b', 'c'})

The ballot has a set-like behavior in the sense that it implements __len__ and __contains__:

>>> ballot = BallotOrder('a ~ b > c', candidates={'a', 'b', 'c', 'd', 'e'})
>>> len(ballot)
3
>>> 'd' in ballot
False

If the order is strict, then the ballot is also iterable:

>>> ballot = BallotOrder('a > b > c')
>>> for candidate in ballot:
... print(candidate)
a
b
c

as_strict_order
Strict order format.

It is a list of candidates. For example, ['a', 'b', 'c']means that a is preferred to b, who is preferred
to c.

Raises ValueError – If the ballot is not a strict order.

Examples

>>> BallotOrder('a > b > c').as_strict_order
['a', 'b', 'c']

Type list

5.1. Ballot 15
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as_weak_order
Weak order format.

A list of sets. For example, [{'a', 'b'}, {'c'}] means that a and b are equally liked, and they are
liked better than c.

Examples

>>> BallotOrder('a ~ b > c', candidates={'a', 'b', 'c', 'd', 'e'}).as_weak_
→˓order
[{'a', 'b'}, {'c'}]

Type list

candidates
the candidates.

If the set was not explicitly given, the candidates are inferred from the ballot.

Examples

>>> BallotOrder('a ~ b > c', candidates={'a', 'b', 'c', 'd', 'e'}).candidates
{'a', 'b', 'c', 'd', 'e'}
>>> BallotOrder('a ~ b > c').candidates
{'a', 'b', 'c'}

Type NiceSet

candidates_in_b
the candidates that are explicitly mentioned in the ballot.

Examples

>>> BallotOrder('a ~ b > c', candidates={'a', 'b', 'c', 'd', 'e'}).candidates_
→˓in_b
{'a', 'b', 'c'}

Type NiceSet

candidates_not_in_b
the candidates that were available at the moment of the vote, but are not explicitly mentioned in the ballot.

Examples

>>> BallotOrder('a ~ b > c', candidates={'a', 'b', 'c', 'd', 'e'}).candidates_
→˓not_in_b
{'d', 'e'}

Type NiceSet

16 Chapter 5. Reference



Whalrus Documentation, Release 0.4.6

first(candidates: set = None, **kwargs)→ object
The first (= most liked) candidate.

Parameters

• candidates (set of candidates) – It can be any set of candidates, not necessar-
ily a subset of self.candidates. Default: self.candidates.

• kwargs –

– priority: a Priority . Default: Priority.UNAMBIGUOUS.

– include_unordered: a boolean. If True (default), then unordered candidates are consid-
ered present but below the others.

Returns The first (= most liked) candidate, chosen in the intersection of self.candidates
and the argument candidates. Can return None for an “abstention”.

Return type candidate

Examples

>>> print(BallotOrder('a ~ b').first(priority=Priority.ASCENDING))
a
>>> print(BallotOrder('a > b', candidates={'a', 'b', 'c'}).first(candidates={
→˓'c'}))
c
>>> print(BallotOrder('a > b', candidates={'a', 'b', 'c'}).first(candidates={
→˓'c'},
... include_
→˓unordered=False))
None

is_strict
Whether the ballot is a strict order or not.

True if the order is strict, i.e. if each indifference class contains one element. There can be some unordered
candidates.

Examples

>>> BallotOrder('a > b > c').is_strict
True
>>> BallotOrder('a > b > c', candidates={'a', 'b', 'c', 'd', 'e'}).is_strict
True
>>> BallotOrder('a ~ b > c').is_strict
False

Type bool

last(candidates: set = None, **kwargs)→ object
The last (= most disliked) candidate.

Parameters

• candidates (set of candidates) – It can be any set of candidates, not necessar-
ily a subset of self.candidates. Default is self.candidates.

5.1. Ballot 17
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• kwargs –

– priority: a Priority object. Default: Priority.UNAMBIGUOUS.

– include_unordered: a boolean. If True (default), then unordered candidates are consid-
ered present but below the others.

Returns The last (= most disliked) candidate, chosen in the intersection of self.
candidates and the argument candidates. Can return None for an “abstention”.

Return type candidate

Examples

>>> print(BallotOrder('a ~ b').last(priority=Priority.ASCENDING))
b
>>> print(BallotOrder('a > b', candidates={'a', 'b', 'c'}).last())
c
>>> print(BallotOrder('a > b', candidates={'a', 'b', 'c'}).last(include_
→˓unordered=False))
b
>>> ballot = BallotOrder('a > b', candidates={'a', 'b', 'c', 'd'})
>>> print(ballot.last(candidates={'c', 'd'}, include_unordered=False))
None

restrict(candidates: set = None, **kwargs)→ whalrus.ballots.ballot_order.BallotOrder
Restrict the ballot to less candidates.

Parameters

• candidates (set of candidates) – It can be any set of candidates, not necessar-
ily a subset of self.candidates). Default: self.candidates.

• kwargs – Some options (depending on the subclass).

Returns The same ballot, “restricted” to the candidates given.

Return type BallotOrder

Examples

Typical usage:

>>> ballot = BallotOrder('a ~ b > c')
>>> ballot
BallotOrder([{'a', 'b'}, 'c'], candidates={'a', 'b', 'c'})
>>> ballot.restrict(candidates={'b', 'c'})
BallotOrder(['b', 'c'], candidates={'b', 'c'})

More general usage:

>>> ballot.restrict(candidates={'b', 'c', 'd'})
BallotOrder(['b', 'c'], candidates={'b', 'c'})

In the last example above, note that d is not in the candidates of the restricted ballot, as she was not
available at the moment when the voter cast her ballot.

18 Chapter 5. Reference



Whalrus Documentation, Release 0.4.6

5.1.3 BallotLevels

class whalrus.BallotLevels(b: dict, candidates: set = None, scale: whalrus.scales.scale.Scale =
None)

Ballot with an evaluation of the candidates.

Parameters

• b (dict) – Keys: candidates. Values represent some form of evaluation. The keys and the
values must be hashable.

• candidates (set) – The candidates that were available at the moment when the voter
cast her ballot. Default: candidates that are explicitly mentioned in the ballot b.

• scale (Scale) – The authorized scale of evaluations at the moment when the voter cast
her ballot. Default: Scale() (meaning in this case “unknown”).

Examples

Most general syntax:

>>> ballot = BallotLevels({'a': 10, 'b': 7, 'c': 3},
... candidates={'a', 'b', 'c', 'd', 'e'},
... scale=ScaleRange(low=0, high=10))

Other examples of syntax:

>>> ballot = BallotLevels({'a': 10, 'b': 7, 'c': 3})
>>> ballot = BallotLevels({'a': 'Good', 'b': 'Bad', 'c': 'Bad'},
... scale=ScaleFromList(['Bad', 'Medium', 'Good']))

In addition to the set-like and list-like behaviors defined in parent class BallotOrder, it also has a dictionary-
like behavior in the sense that it implements __getitem__:

>>> ballot = BallotLevels({'a': 10, 'b': 7, 'c': 3})
>>> ballot['a']
10

as_dict
keys are candidates and values are levels of evaluation.

Examples

>>> BallotLevels({'a': 10, 'b': 7, 'c': 3}).as_dict
{'a': 10, 'b': 7, 'c': 3}

Type NiceDict

as_strict_order
Strict order format.

It is a list of candidates. For example, ['a', 'b', 'c']means that a is preferred to b, who is preferred
to c.

Raises ValueError – If the ballot is not a strict order.

5.1. Ballot 19
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Examples

>>> BallotOrder('a > b > c').as_strict_order
['a', 'b', 'c']

Type list

candidates
the candidates.

If the set was not explicitly given, the candidates are inferred from the ballot.

Examples

>>> BallotOrder('a ~ b > c', candidates={'a', 'b', 'c', 'd', 'e'}).candidates
{'a', 'b', 'c', 'd', 'e'}
>>> BallotOrder('a ~ b > c').candidates
{'a', 'b', 'c'}

Type NiceSet

candidates_not_in_b
the candidates that were available at the moment of the vote, but are not explicitly mentioned in the ballot.

Examples

>>> BallotOrder('a ~ b > c', candidates={'a', 'b', 'c', 'd', 'e'}).candidates_
→˓not_in_b
{'d', 'e'}

Type NiceSet

first(candidates: set = None, **kwargs)→ object
The first (= most liked) candidate.

Parameters

• candidates (set of candidates) – It can be any set of candidates, not necessar-
ily a subset of self.candidates. Default: self.candidates.

• kwargs –

– priority: a Priority . Default: Priority.UNAMBIGUOUS.

– include_unordered: a boolean. If True (default), then unordered candidates are consid-
ered present but below the others.

Returns The first (= most liked) candidate, chosen in the intersection of self.candidates
and the argument candidates. Can return None for an “abstention”.

Return type candidate
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Examples

>>> print(BallotOrder('a ~ b').first(priority=Priority.ASCENDING))
a
>>> print(BallotOrder('a > b', candidates={'a', 'b', 'c'}).first(candidates={
→˓'c'}))
c
>>> print(BallotOrder('a > b', candidates={'a', 'b', 'c'}).first(candidates={
→˓'c'},
... include_
→˓unordered=False))
None

is_strict
Whether the ballot is a strict order or not.

True if the order is strict, i.e. if each indifference class contains one element. There can be some unordered
candidates.

Examples

>>> BallotOrder('a > b > c').is_strict
True
>>> BallotOrder('a > b > c', candidates={'a', 'b', 'c', 'd', 'e'}).is_strict
True
>>> BallotOrder('a ~ b > c').is_strict
False

Type bool

items()→ ItemsView[KT, VT_co]
Items of the ballot.

Returns This is a shortcut for self.as_dict.items().

Return type ItemsView

Examples

>>> ballot = BallotLevels({'a': 10, 'b': 7, 'c': 3}, candidates={'a', 'b', 'c
→˓', 'd', 'e'})
>>> sorted(ballot.items())
[('a', 10), ('b', 7), ('c', 3)]

keys()→ KeysView[KT]
Keys of the ballot.

Returns This is a shortcut for self.as_dict.keys().

Return type KeysView
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Examples

>>> ballot = BallotLevels({'a': 10, 'b': 7, 'c': 3}, candidates={'a', 'b', 'c
→˓', 'd', 'e'})
>>> sorted(ballot.keys())
['a', 'b', 'c']

last(candidates: set = None, **kwargs)→ object
The last (= most disliked) candidate.

Parameters

• candidates (set of candidates) – It can be any set of candidates, not necessar-
ily a subset of self.candidates. Default is self.candidates.

• kwargs –

– priority: a Priority object. Default: Priority.UNAMBIGUOUS.

– include_unordered: a boolean. If True (default), then unordered candidates are consid-
ered present but below the others.

Returns The last (= most disliked) candidate, chosen in the intersection of self.
candidates and the argument candidates. Can return None for an “abstention”.

Return type candidate

Examples

>>> print(BallotOrder('a ~ b').last(priority=Priority.ASCENDING))
b
>>> print(BallotOrder('a > b', candidates={'a', 'b', 'c'}).last())
c
>>> print(BallotOrder('a > b', candidates={'a', 'b', 'c'}).last(include_
→˓unordered=False))
b
>>> ballot = BallotOrder('a > b', candidates={'a', 'b', 'c', 'd'})
>>> print(ballot.last(candidates={'c', 'd'}, include_unordered=False))
None

restrict(candidates: set = None, **kwargs)→ whalrus.ballots.ballot_levels.BallotLevels
Restrict the ballot to less candidates.

Parameters

• candidates (set of candidates) – It can be any set of candidates, not necessar-
ily a subset of self.candidates). Default: self.candidates.

• kwargs – Some options (depending on the subclass).

Returns The same ballot, “restricted” to the candidates given.

Return type BallotOrder

Examples

Typical usage:
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>>> ballot = BallotOrder('a ~ b > c')
>>> ballot
BallotOrder([{'a', 'b'}, 'c'], candidates={'a', 'b', 'c'})
>>> ballot.restrict(candidates={'b', 'c'})
BallotOrder(['b', 'c'], candidates={'b', 'c'})

More general usage:

>>> ballot.restrict(candidates={'b', 'c', 'd'})
BallotOrder(['b', 'c'], candidates={'b', 'c'})

In the last example above, note that d is not in the candidates of the restricted ballot, as she was not
available at the moment when the voter cast her ballot.

values()→ ValuesView[VT_co]
Values of the ballot.

Returns This is a shortcut for self.as_dict.values().

Return type ValuesView

Examples

>>> ballot = BallotLevels({'a': 10, 'b': 7, 'c': 3}, candidates={'a', 'b', 'c
→˓', 'd', 'e'})
>>> sorted(ballot.values())
[3, 7, 10]

5.1.4 BallotOneName

class whalrus.BallotOneName(b: object, candidates: set = None)
A ballot in a mono-nominal context (typically plurality or veto).

Parameters

• b (candidate or None) – None stands for abstention.

• candidates (set) – The candidates that were available at the moment when the voter
cast her ballot.

Examples

>>> ballot = BallotOneName('a', candidates={'a', 'b', 'c'})
>>> print(ballot)
a

>>> ballot = BallotOneName(None, candidates={'a', 'b', 'c'})
>>> print(ballot)
None

candidates_in_b
The candidate that is explicitly mentioned in the ballot.

This is a singleton with the only candidate contained in the ballot (or an empty set in case of abstention).
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Examples

>>> BallotOneName('a', candidates={'a', 'b', 'c'}).candidates_in_b
{'a'}
>>> BallotOneName(None, candidates={'a', 'b', 'c'}).candidates_in_b
{}

Type NiceSet

candidates_not_in_b
The candidates that were available at the moment of the vote, but are not explicitly mentioned in the ballot.

Examples

>>> BallotOneName('a', candidates={'a', 'b', 'c'}).candidates_not_in_b
{'b', 'c'}

Type NiceSet

first(candidates: set = None, **kwargs)→ object
The first (= most liked) candidate.

In this parent class, by default, the ballot is considered as a plurality ballot, i.e. the candidate indicated is
the most liked.

Parameters

• candidates (set of candidates) –

• kwargs –

– priority: a Priority . Default: Priority.UNAMBIGUOUS.

Returns The first (= most liked) candidate.

Return type candidate

Examples

>>> BallotOneName('a', candidates={'a', 'b', 'c'}).first()
'a'
>>> BallotOneName('a', candidates={'a', 'b', 'c'}).first(candidates={'b', 'c'}
→˓,
... priority=Priority.
→˓ASCENDING)
'b'

last(candidates: set = None, **kwargs)→ object
The last (= most disliked) candidate.

In this parent class, by default, the ballot is considered as a plurality ballot, i.e. the candidate indicated is
the most liked.

Parameters

• candidates (set of candidates) –
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• kwargs –

– priority: a Priority . Default: Priority.UNAMBIGUOUS.

Returns The last (= most disliked) candidate.

Return type candidate

Examples

>>> BallotOneName('a', candidates={'a', 'b'}).last()
'b'
>>> BallotOneName('a', candidates={'a', 'b', 'c'}).last(priority=Priority.
→˓ASCENDING)
'c'

restrict(candidates: set = None, **kwargs)→ whalrus.ballots.ballot_one_name.BallotOneName
Restrict the ballot to less candidates.

Parameters

• candidates (set of candidates) – It can be any set of candidates, not necessar-
ily a subset of self.candidates). Default: self.candidates.

• kwargs –

– priority: a Priority . Default: Priority.UNAMBIGUOUS.

Returns The same ballot, “restricted” to the candidates given.

Return type BallotOneName

Examples

>>> BallotOneName('a', candidates={'a', 'b'}).restrict(candidates={'b'})
BallotOneName('b', candidates={'b'})
>>> BallotOneName('a', candidates={'a', 'b', 'c'}).restrict(candidates={'b',
→˓'c'},
... priority=Priority.
→˓ASCENDING)
BallotOneName('b', candidates={'b', 'c'})

5.1.5 BallotPlurality

class whalrus.BallotPlurality(b: object, candidates: set = None)
A plurality ballot.

Examples

>>> ballot = BallotPlurality('a', candidates={'a', 'b', 'c'})
>>> print(ballot)
a
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>>> ballot = BallotPlurality(None, candidates={'a', 'b', 'c'})
>>> print(ballot)
None

candidates_in_b
The candidate that is explicitly mentioned in the ballot.

This is a singleton with the only candidate contained in the ballot (or an empty set in case of abstention).

Examples

>>> BallotOneName('a', candidates={'a', 'b', 'c'}).candidates_in_b
{'a'}
>>> BallotOneName(None, candidates={'a', 'b', 'c'}).candidates_in_b
{}

Type NiceSet

candidates_not_in_b
The candidates that were available at the moment of the vote, but are not explicitly mentioned in the ballot.

Examples

>>> BallotOneName('a', candidates={'a', 'b', 'c'}).candidates_not_in_b
{'b', 'c'}

Type NiceSet

first(candidates: set = None, **kwargs)→ object
The first (= most liked) candidate.

In this parent class, by default, the ballot is considered as a plurality ballot, i.e. the candidate indicated is
the most liked.

Parameters

• candidates (set of candidates) –

• kwargs –

– priority: a Priority . Default: Priority.UNAMBIGUOUS.

Returns The first (= most liked) candidate.

Return type candidate

Examples

>>> BallotOneName('a', candidates={'a', 'b', 'c'}).first()
'a'
>>> BallotOneName('a', candidates={'a', 'b', 'c'}).first(candidates={'b', 'c'}
→˓,

(continues on next page)
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(continued from previous page)

... priority=Priority.
→˓ASCENDING)
'b'

last(candidates: set = None, **kwargs)→ object
The last (= most disliked) candidate.

In this parent class, by default, the ballot is considered as a plurality ballot, i.e. the candidate indicated is
the most liked.

Parameters

• candidates (set of candidates) –

• kwargs –

– priority: a Priority . Default: Priority.UNAMBIGUOUS.

Returns The last (= most disliked) candidate.

Return type candidate

Examples

>>> BallotOneName('a', candidates={'a', 'b'}).last()
'b'
>>> BallotOneName('a', candidates={'a', 'b', 'c'}).last(priority=Priority.
→˓ASCENDING)
'c'

restrict(candidates: set = None, **kwargs)→ whalrus.ballots.ballot_one_name.BallotOneName
Restrict the ballot to less candidates.

Parameters

• candidates (set of candidates) – It can be any set of candidates, not necessar-
ily a subset of self.candidates). Default: self.candidates.

• kwargs –

– priority: a Priority . Default: Priority.UNAMBIGUOUS.

Returns The same ballot, “restricted” to the candidates given.

Return type BallotOneName

Examples

>>> BallotOneName('a', candidates={'a', 'b'}).restrict(candidates={'b'})
BallotOneName('b', candidates={'b'})
>>> BallotOneName('a', candidates={'a', 'b', 'c'}).restrict(candidates={'b',
→˓'c'},
... priority=Priority.
→˓ASCENDING)
BallotOneName('b', candidates={'b', 'c'})
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5.1.6 BallotVeto

class whalrus.BallotVeto(b: object, candidates: set = None)
A veto (anti-plurality) ballot.

Examples

>>> ballot = BallotVeto('a', candidates={'a', 'b', 'c'})
>>> print(ballot)
a

>>> ballot = BallotVeto(None, candidates={'a', 'b', 'c'})
>>> print(ballot)
None

candidates_in_b
The candidate that is explicitly mentioned in the ballot.

This is a singleton with the only candidate contained in the ballot (or an empty set in case of abstention).

Examples

>>> BallotOneName('a', candidates={'a', 'b', 'c'}).candidates_in_b
{'a'}
>>> BallotOneName(None, candidates={'a', 'b', 'c'}).candidates_in_b
{}

Type NiceSet

candidates_not_in_b
The candidates that were available at the moment of the vote, but are not explicitly mentioned in the ballot.

Examples

>>> BallotOneName('a', candidates={'a', 'b', 'c'}).candidates_not_in_b
{'b', 'c'}

Type NiceSet

first(candidates: set = None, **kwargs)→ object

Examples

>>> BallotVeto('a', candidates={'a', 'b'}).first()
'b'
>>> BallotVeto('a', candidates={'a', 'b', 'c'}).first(priority=Priority.
→˓ASCENDING)
'b'

last(candidates: set = None, **kwargs)→ object
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Examples

>>> BallotVeto('a', candidates={'a', 'b', 'c'}).last()
'a'
>>> BallotVeto('a', candidates={'a', 'b', 'c'}).last(candidates={'b', 'c'},
... priority=Priority.
→˓ASCENDING)
'c'

restrict(candidates: set = None, **kwargs)→ whalrus.ballots.ballot_one_name.BallotOneName
Restrict the ballot to less candidates.

Parameters

• candidates (set of candidates) – It can be any set of candidates, not necessar-
ily a subset of self.candidates). Default: self.candidates.

• kwargs –

– priority: a Priority . Default: Priority.UNAMBIGUOUS.

Returns The same ballot, “restricted” to the candidates given.

Return type BallotOneName

Examples

>>> BallotOneName('a', candidates={'a', 'b'}).restrict(candidates={'b'})
BallotOneName('b', candidates={'b'})
>>> BallotOneName('a', candidates={'a', 'b', 'c'}).restrict(candidates={'b',
→˓'c'},
... priority=Priority.
→˓ASCENDING)
BallotOneName('b', candidates={'b', 'c'})

5.2 ConverterBallot

5.2.1 ConverterBallot

class whalrus.ConverterBallot
A ballot converter.

A converter is a callable. Its input may have various formats. Its output must be a Ballot, often of a specific
subclass. For more information and examples, cf. ConverterBallotGeneral.

5.2.2 ConverterBallotGeneral

class whalrus.ConverterBallotGeneral(plurality_priority: whalrus.priorities.priority.Priority
= Priority.UNAMBIGUOUS, veto_priority:
whalrus.priorities.priority.Priority = Pri-
ority.UNAMBIGUOUS, one_name_priority:
whalrus.priorities.priority.Priority = Prior-
ity.UNAMBIGUOUS)

General ballot converter.
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This is a default general converter. It tries to infer the type of input and converts it to an object of the relevant
subclass of Ballot.

Parameters

• plurality_priority (Priority) – Option passed to BallotPlurality.
restrict() when restricting the ballot if, once converted, it is a BallotPlurality .

• veto_priority (Priority) – Option passed to BallotVeto.restrict() when
restricting the ballot if, once converted, if is a BallotVeto.

• one_name_priority (Priority) – Option passed to BallotOneName.
restrict() when restricting the ballot if, once converted, it is a BallotOneName (but
not a BallotPlurality or BallotVeto).

Examples

Typical usage:

>>> converter = ConverterBallotGeneral()
>>> converter({'a': 10, 'b': 7, 'c': 0})
BallotLevels({'a': 10, 'b': 7, 'c': 0}, candidates={'a', 'b', 'c'}, scale=Scale())
>>> converter([{'a', 'b'}, {'c'}])
BallotOrder([{'a', 'b'}, 'c'], candidates={'a', 'b', 'c'})
>>> converter('a ~ b > c')
BallotOrder([{'a', 'b'}, 'c'], candidates={'a', 'b', 'c'})
>>> converter('Alice')
BallotOneName('Alice', candidates={'Alice'})

It is also possible to “restrict” the set of candidates on-the-fly:

>>> converter = ConverterBallotGeneral()
>>> converter('a ~ b > c', candidates={'b', 'c'})
BallotOrder(['b', 'c'], candidates={'b', 'c'})
>>> converter({'a': 10, 'b': 7, 'c': 0}, candidates={'b', 'c'})
BallotLevels({'b': 7, 'c': 0}, candidates={'b', 'c'}, scale=Scale())

Cf. Ballot.restrict() for more information.

Use options for the restrictions:

>>> converter = ConverterBallotGeneral(one_name_priority=Priority.ASCENDING,
... plurality_priority=Priority.ASCENDING,
... veto_priority=Priority.ASCENDING)
>>> converter(BallotOneName('a', candidates={'a', 'b', 'c'}), candidates={'b', 'c
→˓'})
BallotOneName('b', candidates={'b', 'c'})
>>> converter(BallotPlurality('a', candidates={'a', 'b', 'c'}), candidates={'b',
→˓'c'})
BallotPlurality('b', candidates={'b', 'c'})
>>> converter(BallotVeto('a', candidates={'a', 'b', 'c'}), candidates={'b', 'c'})
BallotVeto('c', candidates={'b', 'c'})

5.2.3 ConverterBallotToGrades

class whalrus.ConverterBallotToGrades(scale: whalrus.scales.scale.Scale = None,
borda_unordered_give_points: bool = True)

Default converter to a BallotLevels using numeric grades.
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This is a default converter to a BallotLevels using numeric grades. It tries to infer the type of
input and converts it to a BallotLevels, with a numeric scale. It is a wrapper for the special-
ized converters ConverterBallotToLevelsInterval, ConverterBallotToLevelsRange, and
ConverterBallotToLevelsListNumeric.

Parameters

• scale (numeric Scale) – If specified, then the ballot will be converted to this scale. If it
is None, then any ballot that is of class BallotLevels and numeric will be kept as it is,
and any other ballot will converted to a BallotLevels using a ScaleInterval with
bounds 0 and 1.

• borda_unordered_give_points (bool) – When converting a BallotOrder that
is not a BallotLevels, we use Borda scores as a calculation step. This parameter decides
whether the unordered candidates of the ballot give points to the ordered candidates. Cf.
ScorerBorda.

Examples

Typical usages:

>>> ballot = BallotLevels({'a': 100, 'b': 57}, scale=ScaleRange(0, 100))
>>> ConverterBallotToGrades(scale=ScaleInterval(low=0, high=10))(ballot).as_dict
{'a': 10, 'b': Fraction(57, 10)}
>>> ConverterBallotToGrades(scale=ScaleRange(low=0, high=10))(ballot).as_dict
{'a': 10, 'b': 6}
>>> ConverterBallotToGrades(scale=ScaleFromSet({0, 2, 4, 10}))(ballot).as_dict
{'a': 10, 'b': 4}

>>> ballot = BallotLevels({'a': 'Good', 'b': 'Medium'},
... scale=ScaleFromList(['Bad', 'Medium', 'Good']))
>>> ConverterBallotToGrades()(ballot).as_dict
{'a': 1, 'b': Fraction(1, 2)}

For more examples, cf. ConverterBallotToLevelsInterval,
ConverterBallotToLevelsRange, and ConverterBallotToLevelsListNumeric.

5.2.4 ConverterBallotToLevels

class whalrus.ConverterBallotToLevels(scale: whalrus.scales.scale.Scale = None,
borda_unordered_give_points: bool = True)

Default converter to a BallotLevels (representing grades, appreciations, etc).

This is a default converter to a BallotLevels. It tries to infer the type of input and converts it to a
BallotLevels. It is a wrapper for the specialized converters ConverterBallotToLevelsInterval,
ConverterBallotToLevelsRange, ConverterBallotToLevelsListNumeric, and
ConverterBallotToLevelsListNonNumeric.

Parameters

• scale (Scale) – If specified, then the ballot will be converted to this scale. If it is None,
then any ballot of class BallotLevels will be kept as it is, and any other ballot will
converted to a BallotLevels using a ScaleInterval with bounds 0 and 1

• borda_unordered_give_points (bool) – When converting a BallotOrder that
is not a BallotLevels, we use Borda scores as a calculation step. This parameter decides
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whether the unordered candidates of the ballot give points to the ordered candidates. Cf.
ScorerBorda.

Examples

Typical usages:

>>> ballot = BallotLevels({'a': 100, 'b': 57}, scale=ScaleRange(0, 100))
>>> ConverterBallotToLevels(scale=ScaleInterval(low=0, high=10))(ballot).as_dict
{'a': 10, 'b': Fraction(57, 10)}
>>> ConverterBallotToLevels(scale=ScaleRange(low=0, high=10))(ballot).as_dict
{'a': 10, 'b': 6}
>>> ConverterBallotToLevels(scale=ScaleFromList([
... 'Bad', 'Medium', 'Good', 'Very Good', 'Great', 'Excellent']))(ballot).as_
→˓dict
{'a': 'Excellent', 'b': 'Very Good'}
>>> ConverterBallotToLevels(scale=ScaleFromSet({0, 2, 4, 10}))(ballot).as_dict
{'a': 10, 'b': 4}

For more examples, cf. ConverterBallotToLevelsInterval,
ConverterBallotToLevelsRange, ConverterBallotToLevelsListNumeric, and
ConverterBallotToLevelsListNonNumeric.

5.2.5 ConverterBallotToLevelsInterval

class whalrus.ConverterBallotToLevelsInterval(scale: whalrus.scales.scale.Scale
= ScaleInterval(low=0, high=1),
borda_unordered_give_points: bool
= True)

0 Default converter to a BallotLevels using a ScaleInterval (interval of real numbers).

Parameters

• scale (ScaleInterval) –

• borda_unordered_give_points (bool) – When converting a BallotOrder that
is not a BallotLevels, we use Borda scores (normalized to the interval [scale.low,
scale.high]. This parameter decides whether the unordered candidates of the ballot give
points to the ordered candidates. Cf. ScorerBorda.

Examples

Typical usages:

>>> converter = ConverterBallotToLevelsInterval()
>>> b = BallotLevels({'a': 1, 'b': .5}, candidates={'a', 'b', 'c'},
→˓scale=ScaleInterval(-1, 1))
>>> converter(b).as_dict
{'a': 1, 'b': Fraction(3, 4)}
>>> b = BallotLevels({'a': 5, 'b': 4}, candidates={'a', 'b', 'c'},
→˓scale=ScaleRange(0, 5))
>>> converter(b).as_dict
{'a': 1, 'b': Fraction(4, 5)}
>>> b = BallotLevels({'a': 3, 'b': 0}, candidates={'a', 'b', 'c'},
→˓scale=ScaleFromSet({-1, 0, 3}))

(continues on next page)
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>>> converter(b).as_dict
{'a': 1, 'b': Fraction(1, 4)}
>>> b = BallotLevels({'a': 'Excellent', 'b': 'Very Good'}, candidates={'a', 'b',
→˓'c'},
... scale=ScaleFromList(['Bad', 'Medium', 'Good', 'Very Good',
→˓'Excellent']))
>>> converter(b).as_dict
{'a': 1, 'b': Fraction(3, 4)}
>>> converter(BallotOneName('a', candidates={'a', 'b', 'c'})).as_dict
{'a': 1, 'b': 0, 'c': 0}
>>> converter(BallotPlurality('a', candidates={'a', 'b', 'c'})).as_dict
{'a': 1, 'b': 0, 'c': 0}
>>> converter(BallotVeto('a', candidates={'a', 'b', 'c'})).as_dict
{'a': 0, 'b': 1, 'c': 1}
>>> converter('a > b > c').as_dict
{'a': 1, 'b': Fraction(1, 2), 'c': 0}

Options for converting ordered ballots:

>>> b = BallotOrder('a > b > c', candidates={'a', 'b', 'c', 'd', 'e'})
>>> ConverterBallotToLevelsInterval(borda_unordered_give_points=False)(b).as_dict
{'a': 1, 'b': Fraction(1, 2), 'c': 0}
>>> ConverterBallotToLevelsInterval(borda_unordered_give_points=True)(b).as_dict
{'a': 1, 'b': Fraction(3, 4), 'c': Fraction(1, 2)}

5.2.6 ConverterBallotToLevelsListNonNumeric

class whalrus.ConverterBallotToLevelsListNonNumeric(scale: whal-
rus.scales.scale_from_list.ScaleFromList,
borda_unordered_give_points:
bool = True)

Default converter to a BallotLevels using a ScaleFromList of levels that are not numbers.

This converter works essentially the same as ConverterBallotToLevelsInterval, but it then maps
the evaluation to levels of the scale.

Parameters

• scale (ScaleFromList) – The scale.

• borda_unordered_give_points (bool) – When converting a BallotOrder that
is not a BallotLevels, we use Borda scores as a calculation step. This parameter decides
whether the unordered candidates of the ballot give points to the ordered candidates. Cf.
ScorerBorda.

Examples

Typical usages:

>>> converter = ConverterBallotToLevelsListNonNumeric(
... scale=ScaleFromList(['Bad', 'Medium', 'Good', 'Very Good', 'Great',
→˓'Excellent']))
>>> b = BallotLevels({'a': 1, 'b': .2}, candidates={'a', 'b', 'c'},
→˓scale=ScaleInterval(-1, 1))
>>> converter(b).as_dict

(continues on next page)
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{'a': 'Excellent', 'b': 'Very Good'}
>>> b = BallotLevels({'a': 5, 'b': 4}, candidates={'a', 'b', 'c'},
→˓scale=ScaleRange(0, 5))
>>> converter(b).as_dict
{'a': 'Excellent', 'b': 'Great'}
>>> b = BallotLevels({'a': 4, 'b': 0}, candidates={'a', 'b', 'c'},
→˓scale=ScaleFromSet({-1, 0, 4}))
>>> converter(b).as_dict
{'a': 'Excellent', 'b': 'Medium'}
>>> converter(BallotOneName('a', candidates={'a', 'b', 'c'})).as_dict
{'a': 'Excellent', 'b': 'Bad', 'c': 'Bad'}
>>> converter(BallotPlurality('a', candidates={'a', 'b', 'c'})).as_dict
{'a': 'Excellent', 'b': 'Bad', 'c': 'Bad'}
>>> converter(BallotVeto('a', candidates={'a', 'b', 'c'})).as_dict
{'a': 'Bad', 'b': 'Excellent', 'c': 'Excellent'}
>>> converter('a > b > c > d').as_dict
{'a': 'Excellent', 'b': 'Very Good', 'c': 'Good', 'd': 'Bad'}

5.2.7 ConverterBallotToLevelsListNumeric

class whalrus.ConverterBallotToLevelsListNumeric(scale: whal-
rus.scales.scale_from_list.ScaleFromList,
borda_unordered_give_points: bool
= True)

Default converter to a BallotLevels using a ScaleFromList of numbers.

This converter works essentially the same as ConverterBallotToLevelsInterval, but it then maps
the evaluations to levels of the scale.

Parameters

• scale (ScaleFromList) – The scale.

• borda_unordered_give_points (bool) – When converting a BallotOrder that
is not a BallotLevels, we use Borda scores as a calculation step. This parameter decides
whether the unordered candidates of the ballot give points to the ordered candidates. Cf.
ScorerBorda.

Examples

Typical usages:

>>> converter = ConverterBallotToLevelsListNumeric(scale=ScaleFromList([-1, 0, 3,
→˓4]))
>>> b = BallotLevels({'a': 1, 'b': .2}, candidates={'a', 'b', 'c'},
→˓scale=ScaleInterval(-1, 1))
>>> converter(b).as_dict
{'a': 4, 'b': 3}
>>> b = BallotLevels({'a': 5, 'b': 4}, candidates={'a', 'b', 'c'},
→˓scale=ScaleRange(0, 5))
>>> converter(b).as_dict
{'a': 4, 'b': 3}
>>> b = BallotLevels({'a': 4, 'b': 0}, candidates={'a', 'b', 'c'},
→˓scale=ScaleFromSet({-1, 0, 4}))
>>> converter(b).as_dict

(continues on next page)
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{'a': 4, 'b': 0}
>>> converter(BallotOneName('a', candidates={'a', 'b', 'c'})).as_dict
{'a': 4, 'b': -1, 'c': -1}
>>> converter(BallotPlurality('a', candidates={'a', 'b', 'c'})).as_dict
{'a': 4, 'b': -1, 'c': -1}
>>> converter(BallotVeto('a', candidates={'a', 'b', 'c'})).as_dict
{'a': -1, 'b': 4, 'c': 4}
>>> converter('a > b > c > d').as_dict
{'a': 4, 'b': 3, 'c': 0, 'd': -1}

5.2.8 ConverterBallotToLevelsRange

class whalrus.ConverterBallotToLevelsRange(scale: whalrus.scales.scale_range.ScaleRange
= ScaleRange(low=0, high=1),
borda_unordered_give_points: bool =
True)

Default converter to a BallotLevels using a ScaleRange (range of integers).

This converter works essentially the same as ConverterBallotToLevelsInterval, but it rounds the
grades to the nearest integers.

Parameters

• scale (ScaleRange) – The scale.

• borda_unordered_give_points (bool) – When converting a BallotOrder that
is not a BallotLevels, we use Borda scores (normalized to the interval [scale.low,
scale.high] and rounded). This parameter decides whether the unordered candidates of
the ballot give points to the ordered candidates. Cf. ScorerBorda.

Examples

Typical usages:

>>> converter = ConverterBallotToLevelsRange(scale=ScaleRange(low=0, high=10))
>>> b = BallotLevels({'a': 1, 'b': .4}, candidates={'a', 'b', 'c'},
→˓scale=ScaleInterval(-1, 1))
>>> converter(b).as_dict
{'a': 10, 'b': 7}
>>> b = BallotLevels({'a': 5, 'b': 4}, candidates={'a', 'b', 'c'},
→˓scale=ScaleRange(0, 5))
>>> converter(b).as_dict
{'a': 10, 'b': 8}
>>> b = BallotLevels({'a': 4, 'b': 0}, candidates={'a', 'b', 'c'},
→˓scale=ScaleFromSet({-1, 0, 4}))
>>> converter(b).as_dict
{'a': 10, 'b': 2}
>>> b = BallotLevels(
... {'a': 'Excellent', 'b': 'Very Good'}, candidates={'a', 'b', 'c'},
... scale=ScaleFromList(['Bad', 'Medium', 'Good', 'Very Good', 'Great',
→˓'Excellent']))
>>> converter(b).as_dict
{'a': 10, 'b': 6}
>>> converter(BallotOneName('a', candidates={'a', 'b', 'c'})).as_dict
{'a': 10, 'b': 0, 'c': 0}

(continues on next page)
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>>> converter(BallotPlurality('a', candidates={'a', 'b', 'c'})).as_dict
{'a': 10, 'b': 0, 'c': 0}
>>> converter(BallotVeto('a', candidates={'a', 'b', 'c'})).as_dict
{'a': 0, 'b': 10, 'c': 10}
>>> converter('a > b > c').as_dict
{'a': 10, 'b': 5, 'c': 0}

Options for converting ordered ballots:

>>> b = BallotOrder('a > b > c', candidates={'a', 'b', 'c', 'd', 'e', 'f'})
>>> converter = ConverterBallotToLevelsRange(scale=ScaleRange(low=0, high=10),
... borda_unordered_give_points=False)
>>> converter(b).as_dict
{'a': 10, 'b': 5, 'c': 0}
>>> converter = ConverterBallotToLevelsRange(scale=ScaleRange(low=0, high=10),
... borda_unordered_give_points=True)
>>> converter(b).as_dict
{'a': 10, 'b': 8, 'c': 6}

5.2.9 ConverterBallotToOrder

class whalrus.ConverterBallotToOrder
Default converter to a BallotOrder.

This is a default converter to a BallotOrder. It tries to infer the type of input and converts it to an ordered
ballot (possibly a ballot of a subclass, such as BallotLevels).

Examples

>>> converter = ConverterBallotToOrder()
>>> converter('a > b ~ c')
BallotOrder(['a', {'b', 'c'}], candidates={'a', 'b', 'c'})
>>> converter(['a', {'b', 'c'}])
BallotOrder(['a', {'b', 'c'}], candidates={'a', 'b', 'c'})
>>> converter({'a': 10, 'b': 7, 'c': 0})
BallotLevels({'a': 10, 'b': 7, 'c': 0}, candidates={'a', 'b', 'c'}, scale=Scale())
>>> converter(BallotOneName('a', candidates={'a', 'b', 'c'}))
BallotOrder(['a', {'b', 'c'}], candidates={'a', 'b', 'c'})
>>> converter(BallotPlurality('a', candidates={'a', 'b', 'c'}))
BallotOrder(['a', {'b', 'c'}], candidates={'a', 'b', 'c'})
>>> converter(BallotVeto('a', candidates={'a', 'b', 'c'}))
BallotOrder([{'b', 'c'}, 'a'], candidates={'a', 'b', 'c'})
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5.2.10 ConverterBallotToPlurality

class whalrus.ConverterBallotToPlurality(priority: whalrus.priorities.priority.Priority
= Priority.UNAMBIGUOUS, order_priority:
whalrus.priorities.priority.Priority
= None, plurality_priority: whal-
rus.priorities.priority.Priority = None,
veto_priority: whalrus.priorities.priority.Priority
= None, one_name_priority: whal-
rus.priorities.priority.Priority = None)

Default converter to a BallotPlurality .

Parameters

• priority (Priority) – Serves as a default value for the other parameters if they are
not explicitly mentioned. Default: Priority.UNAMBIGUOUS.

• order_priority (Priority) – Option passed to BallotOrder.first(). De-
fault: priority.

• plurality_priority (Priority) – Option passed to BallotPlurality.
first(). Default: priority.

• veto_priority (Priority) – Option passed to BallotVeto.first(). Default:
priority.

• one_name_priority (Priority) – Option passed to BallotOneName.first().
Default: priority.

Examples

Typical usages:

>>> converter = ConverterBallotToPlurality()
>>> converter(BallotOneName('a', candidates={'a', 'b'}))
BallotPlurality('a', candidates={'a', 'b'})
>>> converter(BallotVeto('a', candidates={'a', 'b'}))
BallotPlurality('b', candidates={'a', 'b'})
>>> converter({'a': 10, 'b': 7, 'c':0})
BallotPlurality('a', candidates={'a', 'b', 'c'})
>>> converter('a > b ~ c')
BallotPlurality('a', candidates={'a', 'b', 'c'})
>>> converter(['a', {'b', 'c'}])
BallotPlurality('a', candidates={'a', 'b', 'c'})

Use options for the restrictions:

>>> converter = ConverterBallotToPlurality(priority=Priority.ASCENDING)
>>> converter('a ~ b > c')
BallotPlurality('a', candidates={'a', 'b', 'c'})

Misc:

>>> ballot = BallotVeto('a', candidates={'a', 'b', 'c'})
>>> converter = ConverterBallotToPlurality()
>>> converter(ballot, candidates={'a', 'b', 'd'})
BallotPlurality('b', candidates={'a', 'b'})
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5.2.11 ConverterBallotToStrictOrder

class whalrus.ConverterBallotToStrictOrder(priority: whalrus.priorities.priority.Priority =
Priority.UNAMBIGUOUS)

Default converter to a strictly ordered ballot.

This is a default converter to a strictly ordered ballot (cf. BallotOrder.is_strict). It tries to infer the
type of input and converts it to a BallotOrder (possibly a ballot of a subclass, such as BallotLevels),
ensuring that the represented order is strict.

Parameters priority (Priority) – The Priority used to break ties. Default: Priority.
UNAMBIGUOUS.

Examples

>>> converter = ConverterBallotToStrictOrder(priority=Priority.ASCENDING)
>>> converter('a > b ~ c')
BallotOrder(['a', 'b', 'c'], candidates={'a', 'b', 'c'})
>>> converter(['a', {'b', 'c'}])
BallotOrder(['a', 'b', 'c'], candidates={'a', 'b', 'c'})
>>> converter({'a': 10, 'b': 7, 'c': 0})
BallotLevels({'a': 10, 'b': 7, 'c': 0}, candidates={'a', 'b', 'c'}, scale=Scale())
>>> converter(BallotOneName('a', candidates={'a', 'b', 'c'}))
BallotOrder(['a', 'b', 'c'], candidates={'a', 'b', 'c'})
>>> converter(BallotPlurality('a', candidates={'a', 'b', 'c'}))
BallotOrder(['a', 'b', 'c'], candidates={'a', 'b', 'c'})
>>> converter(BallotVeto('a', candidates={'a', 'b', 'c'}))
BallotOrder(['b', 'c', 'a'], candidates={'a', 'b', 'c'})

5.2.12 ConverterBallotToVeto

class whalrus.ConverterBallotToVeto(priority: whalrus.priorities.priority.Priority =
Priority.UNAMBIGUOUS, order_priority: whal-
rus.priorities.priority.Priority = None, plural-
ity_priority: whalrus.priorities.priority.Priority =
None, veto_priority: whalrus.priorities.priority.Priority
= None, one_name_priority: whal-
rus.priorities.priority.Priority = None)

Default converter to a BallotVeto.

Parameters

• priority (Priority) – Serves as a default value for the other parameters if they are
not explicitly mentioned. Default: Priority.UNAMBIGUOUS.

• order_priority (Priority) – Option passed to BallotOrder.last(). Default:
priority.

• plurality_priority (Priority) – Option passed to BallotPlurality.
last(). Default: priority.

• veto_priority (Priority) – Option passed to BallotVeto.last(). Default:
priority.

• one_name_priority (Priority) – Option passed to BallotOneName.last().
Default: priority.
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Examples

Typical usages:

>>> converter = ConverterBallotToVeto()
>>> converter(BallotOneName('a', candidates={'a', 'b'}))
BallotVeto('a', candidates={'a', 'b'})
>>> converter(BallotPlurality('a', candidates={'a', 'b'}))
BallotVeto('b', candidates={'a', 'b'})
>>> converter({'a': 10, 'b': 7, 'c':0})
BallotVeto('c', candidates={'a', 'b', 'c'})
>>> converter('a ~ b > c')
BallotVeto('c', candidates={'a', 'b', 'c'})
>>> converter([{'a', 'b'}, 'c'])
BallotVeto('c', candidates={'a', 'b', 'c'})

Use options for the restrictions:

>>> converter = ConverterBallotToVeto(priority=Priority.ASCENDING)
>>> converter('a > b ~ c')
BallotVeto('c', candidates={'a', 'b', 'c'})

5.3 Elimination

5.3.1 Elimination

class whalrus.Elimination(*args, **kwargs)
An elimination method.

An Elimination object is a callable whose input is a Rule (which has already loaded a profile). When
the Elimination object is called, it loads the rule. The output of the call is the Elimination ob-
ject itself. But after the call, you can access to the computed variables (ending with an underscore), such as
eliminated_order_, eliminated_ or qualified_.

Parameters

• args – If present, these parameters will be passed to __call__ immediately after initial-
ization.

• kwargs – If present, these parameters will be passed to __call__ immediately after
initialization.

rule_
This attribute stores the rule given in argument of the __call__.

Type Rule

Examples

Cf. EliminationLast for some examples.

eliminated_
The eliminated candidates.

This should always be non-empty. It may contain all the candidates (for example, it is always the case
when there was only one candidate in the election).
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Type NiceSet

eliminated_order_
The order on the eliminated candidates.

It is a list where each element is a NiceSet. Each set represents a class of tied candidates. The first set in
the list represents the “best” eliminated candidates, whereas the last set represent the “worst” candidates.

Type list

qualified_
The candidates that are qualified (not eliminated).

Type NiceSet

5.3.2 EliminationBelowAverage

class whalrus.EliminationBelowAverage(*args, strict=True, **kwargs)
Elimination of the candidates whose score is lower than the average score

Parameters

• args – Cf. parent class.

• strict (bool) – If True (resp. False), then eliminate the candidates whose score is strictly
lower than (resp. lower or equal to) the average.

• kwargs – Cf. parent class.

Examples

>>> rule = RulePlurality(ballots=['a', 'b', 'c', 'd'], weights=[35, 30, 25, 10])
>>> rule.gross_scores_
{'a': 35, 'b': 30, 'c': 25, 'd': 10}
>>> EliminationBelowAverage(rule=rule).eliminated_
{'d'}
>>> EliminationBelowAverage(rule=rule, strict=False).eliminated_
{'c', 'd'}

If no candidates should be eliminated (which may happen only if strict is True), then all candidates are
eliminated.

>>> rule = RulePlurality(ballots=['a', 'b'])
>>> rule.gross_scores_
{'a': 1, 'b': 1}
>>> EliminationBelowAverage(rule=rule).eliminated_
{'a', 'b'}

eliminated_
The eliminated candidates.

This should always be non-empty. It may contain all the candidates (for example, it is always the case
when there was only one candidate in the election).

Type NiceSet

qualified_
The candidates that are qualified (not eliminated).

Type NiceSet
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5.3.3 EliminationLast

class whalrus.EliminationLast(*args, k: int = 1, **kwargs)
Elimination of the last candidates (with a fixed number of candidates to eliminate, or to qualify).

Parameters

• args – Cf. parent class.

• k (int) – A nonzero integer. The number of eliminated candidates. If this number is
negative, then len(rule.candidates_) - abs(k) candidates are eliminated, i.e.
abs(k) candidates are qualified.

• kwargs` – Cf. parent class.

Examples

In the most general syntax, firstly, you define the elimination method:

>>> elimination = EliminationLast(k=1)

Secondly, you use it as a callable to load a particular election (rule, profile, candidates):

>>> rule = RulePlurality(ballots=['a', 'a', 'b', 'b', 'c'])
>>> elimination(rule) # doctest:+ELLIPSIS
<... object at ...>

Finally, you can access the computed variables:

>>> elimination.eliminated_
{'c'}

Later, if you wish, you can load another election with the same elimination method, and so on.

Optionally, you can specify an election (rule, profile, candidates) as soon as the Elimination object is
initialized. This allows for one-liners such as:

>>> EliminationLast(rule=RulePlurality(ballots=['a', 'a', 'b', 'b', 'c']), k=1).
→˓eliminated_
{'c'}

Typical usage with k = 1 (e.g. for RuleIRV ):

>>> rule = RulePlurality(ballots=['a', 'a', 'a', 'b', 'b', 'c', 'c', 'd', 'e'],
... tie_break=Priority.ASCENDING)
>>> EliminationLast(rule=rule, k=1).eliminated_
{'e'}

Typical usage with k = -2 (e.g. for RuleTwoRound):

>>> rule = RulePlurality(ballots=['a', 'a', 'a', 'b', 'b', 'c', 'c', 'd', 'e'],
... tie_break=Priority.ASCENDING)
>>> EliminationLast(rule=rule, k=-2).qualified_
{'a', 'b'}

Order of elimination:
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>>> rule = RulePlurality(ballots=['a', 'a', 'a', 'b', 'b', 'c', 'c', 'd', 'e'],
... tie_break=Priority.ASCENDING)
>>> EliminationLast(rule=rule, k=-2).eliminated_order_
[{'c'}, {'d', 'e'}]

There must always be at least one eliminated candidate. If it is not possible to eliminate (case k > 0) or keep
(case k < 0) as many candidates as required, then everybody is eliminated:

>>> rule = RulePlurality(ballots=['a'])
>>> EliminationLast(rule=rule, k=1).eliminated_
{'a'}
>>> EliminationLast(rule=rule, k=-2).eliminated_
{'a'}

eliminated_
The eliminated candidates.

This should always be non-empty. It may contain all the candidates (for example, it is always the case
when there was only one candidate in the election).

Type NiceSet

qualified_
The candidates that are qualified (not eliminated).

Type NiceSet

5.4 Matrix

5.4.1 Matrix

class whalrus.Matrix(*args, converter: whalrus.converters_ballot.converter_ballot.ConverterBallot
= None, **kwargs)

A way to compute a matrix from a profile.

A Matrix object is a callable whose inputs are ballots and optionally weights, voters and candidates. When
it is called, it loads the profile. The output of the call is the Matrix object itself. But after the call, you can
access to the computed variables (ending with an underscore), such as as_dict_ or as_array_.

Parameters

• args – If present, these parameters will be passed to __call__ immediately after initial-
ization.

• converter (ConverterBallot) – The converter that is used to convert input ballots
in order to compute profile_converted_. Default: ConverterBallotGeneral.

• kwargs – If present, these parameters will be passed to __call__ immediately after
initialization.

profile_original_
The profile as it is entered by the user. This uses the constructor of Profile. Hence indirectly, it uses
ConverterBallotGeneral to ensure, for example, that strings like 'a > b > c' are converted to
:class:Ballot objects.

Type Profile
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profile_converted_
The profile, with ballots that are adequate for the voting rule. For example, in
MatrixWeightedMajority , it will be BallotOrder objects. This uses the parameter
converter of the object.

Type Profile

candidates_
The candidates of the election, as entered in the __call__.

Type NiceSet

Examples

Cf. MatrixWeightedMajority for some examples.

as_array_
The matrix, as a numpy array. Each row and each column corresponds to a candidate (in the order of
candidates_as_list_).

Type Array

as_array_of_floats_
The matrix, as a numpy array. It is the same as as_array_, but converted to floats.

Type Array

as_dict_
The matrix, as a NiceDict. Keys are pairs of candidates, and values are the coefficients of the matrix.

Type NiceDict

candidates_as_list_
The list of candidates. Candidates are sorted if possible.

Type list

candidates_indexes_
The candidates as a dictionary. To each candidate, it associates its index in candidates_as_list_.

Type NiceDict

5.4.2 MatrixMajority

class whalrus.MatrixMajority(*args, converter: whalrus.converters_ballot.converter_ballot.ConverterBallot
= None, matrix_weighted_majority: whal-
rus.matrices.matrix.Matrix = None, greater: numbers.Number
= 1, lower: numbers.Number = 0, equal: numbers.Number =
Fraction(1, 2), diagonal: numbers.Number = Fraction(1, 2),
**kwargs)

The majority matrix.

Parameters

• args – Cf. parent class.

• converter (ConverterBallot) – Default: ConverterBallotToOrder.

• matrix_weighted_majority (Matrix.) – Algorithm used to compute the weighted
majority matrix W. Default: MatrixWeightedMajority .

• greater (Number) – Value used when W(c, d) > W(d, c).
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• lower (Number) – Value used when W(c, d) < W(d, c).

• equal (Number) – Value used when W(c, d) = W(d, c) (except for diagonal coefficients).

• diagonal (Number) – Value used for the diagonal coefficients.

• kwargs – Cf. parent class.

Examples

First, we compute a matrix W with the algorithm given in the parameter matrix_weighted_majority.
Then for each pair of candidates (c, d), the coefficient of the majority matrix is set to greater, lower, equal
or diagonal, depending on the values of W(c, d) and W(d, c).

>>> MatrixMajority(ballots=['a > b ~ c', 'b > a > c', 'c > a > b']).as_array_
array([[Fraction(1, 2), 1, 1],

[0, Fraction(1, 2), Fraction(1, 2)],
[0, Fraction(1, 2), Fraction(1, 2)]], dtype=object)

Using the options:

>>> MatrixMajority(ballots=['a > b ~ c', 'b > a > c', 'c > a > b'], equal=0,
→˓diagonal=0).as_array_
array([[0, 1, 1],

[0, 0, 0],
[0, 0, 0]])

as_array_
The matrix, as a numpy array. Each row and each column corresponds to a candidate (in the order of
candidates_as_list_).

Type Array

as_array_of_floats_
The matrix, as a numpy array. It is the same as as_array_, but converted to floats.

Type Array

matrix_weighted_majority_
The weighted majority matrix (upon which the computation of the majority matrix is based), once com-
puted with the given profile.

Type Matrix

5.4.3 MatrixRankedPairs

class whalrus.MatrixRankedPairs(*args, converter: whalrus.converters_ballot.converter_ballot.ConverterBallot
= None, matrix_weighted_majority: whal-
rus.matrices.matrix.Matrix = None, tie_break: whal-
rus.priorities.priority.Priority = Priority.UNAMBIGUOUS,
**kwargs)

The ranked pairs matrix.

Parameters

• args – Cf. parent class.

• converter (ConverterBallot) – Default: ConverterBallotToOrder.
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• matrix_weighted_majority (Matrix) – Algorithm used to compute the weighted
majority matrix W. Default: MatrixWeightedMajority .

• tie_break (Priority) – The tie-break used when two duels have the same score.

• kwargs – Cf. parent class.

Examples

First, we compute a matrix W with the algorithm given in the parameter matrix_weighted_majority.
The ranked pair matrix represents a graph whose vertices are the candidates. In order to build it, we consider all
duels between two distinct candidates (c, d), by decreasing order of the value W(c, d). We add an edge (c, d) in
the ranked pairs matrix, except if it creates a cycle in the graph, and we consider the transitive closure.

>>> m = MatrixRankedPairs(['a > b > c', 'b > c > a', 'c > a > b'], weights=[4, 3,
→˓2])
>>> m.edges_order_
[('b', 'c'), ('a', 'b'), ('c', 'a')]
>>> m.as_array_
array([[0, 1, 1],

[0, 0, 1],
[0, 0, 0]], dtype=object)

In the example example above, the edge (b, c) is added. Then it is the edge (a, b) which, by transitive closure,
also adds the edge (a, c). Finally the edge (c, a) (representing the victory of c over a in the weighted majority
matrix) should be added, but it would introduce a cycle in the graph, so it is ignored.

If two duels have the same score, the tie-break is used. For example, with Priority.ASCENDING, we add a
victory (a, . . . ) before a victory (b, . . . ); and we add a victory (a, c) before a victory (a, b) (because b is favored
over c). A very simple but illustrative example:

>>> MatrixRankedPairs(['a > b > c'], tie_break=Priority.ASCENDING).edges_order_
[('a', 'c'), ('a', 'b'), ('b', 'c')]

as_array_of_floats_
The matrix, as a numpy array. It is the same as as_array_, but converted to floats.

Type Array

edges_order_
The order in which edges should be added (if possible). It is a list of pairs of candidates. E.g. [('b',
'c'), ('c', 'a'), ('a', 'b')], where (‘b’, ‘c’) is the first edge to add.

Type list

matrix_weighted_majority_
The weighted majority matrix (upon which the computation of the Ranked Pairs matrix is based), once
computed with the given profile).

Type Matrix

5.4.4 MatrixSchulze

class whalrus.MatrixSchulze(*args, converter: whalrus.converters_ballot.converter_ballot.ConverterBallot
= None, matrix_weighted_majority: whalrus.matrices.matrix.Matrix
= None, **kwargs)

The Schulze matrix.
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Parameters

• args – Cf. parent class.

• converter (ConverterBallot) – Default: ConverterBallotToOrder.

• matrix_weighted_majority (Matrix) – Algorithm used to compute the weighted
majority matrix W. Default: MatrixWeightedMajority .

• kwargs – Cf. parent class.

Examples

First, we compute a matrix W with the algorithm given in the parameter matrix_weighted_majority.
The Schulze matrix gives, for each pair of candidates (c, d), the width of the widest path from c to d, where the
width of a path is the minimum weight of its edges.

>>> m = MatrixSchulze(['a > b > c', 'b > c > a', 'c > a > b'], weights=[4, 3, 2])
>>> m.as_array_
array([[0, Fraction(2, 3), Fraction(2, 3)],

[Fraction(5, 9), 0, Fraction(7, 9)],
[Fraction(5, 9), Fraction(5, 9), 0]], dtype=object)

as_array_of_floats_
The matrix, as a numpy array. It is the same as as_array_, but converted to floats.

Type Array

matrix_weighted_majority_
The weighted majority matrix (upon which the computation of the Schulze is based), once computed with
the given profile.

Type Matrix

5.4.5 MatrixWeightedMajority

class whalrus.MatrixWeightedMajority(*args, converter: whal-
rus.converters_ballot.converter_ballot.ConverterBallot
= None, higher_vs_lower: Optional[numbers.Number]
= 1, lower_vs_higher: Optional[numbers.Number]
= 0, indifference: Optional[numbers.Number]
= Fraction(1, 2), ordered_vs_unordered: Op-
tional[numbers.Number] = 1, unordered_vs_ordered:
Optional[numbers.Number] = 0, un-
ordered_vs_unordered: Optional[numbers.Number]
= Fraction(1, 2), ordered_vs_absent: Op-
tional[numbers.Number] = None, absent_vs_ordered:
Optional[numbers.Number] = None, un-
ordered_vs_absent: Optional[numbers.Number]
= None, absent_vs_unordered: Op-
tional[numbers.Number] = None, absent_vs_absent:
Optional[numbers.Number] = None, diagonal_score:
numbers.Number = 0, default_score: numbers.Number
= 0, antisymmetric: bool = False, **kwargs)

The weighted majority matrix.

Parameters
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• args – Cf. parent class.

• converter (ConverterBallot) – Default: ConverterBallotToOrder.

• higher_vs_lower (Number or None) – Number of points for candidate c when it is
ordered higher than candidate d.

• lower_vs_higher (Number or None) – Number of points for candidate c when it is
ordered lower than candidate d.

• indifference (Number or None) – Number of points for candidate c when it is
ordered and tied with candidate d.

• ordered_vs_unordered (Number or None) – Number of points for candidate c
when it is ordered and d is unordered.

• unordered_vs_ordered (Number or None) – Number of points for candidate c
when it is unordered and d is ordered.

• unordered_vs_unordered (Number or None) – Number of points for candidate
c when it is unordered and d is unordered.

• ordered_vs_absent (Number or None) – Number of points for candidate c when
it is ordered and d is absent.

• absent_vs_ordered (Number or None) – Number of points for candidate c when
it is absent and d is ordered.

• unordered_vs_absent (Number or None) – Number of points for candidate c
when it is unordered and d is absent.

• absent_vs_unordered (Number or None) – Number of points for candidate c
when it is absent and d is unordered.

• absent_vs_absent (Number or None) – Number of points for candidate c when it
is absent and d is absent.

• diagonal_score (Number) – Value of the diagonal coefficients.

• default_score (Number) – Default score in the matrix in case of division by 0 (except
for the diagonal coefficients).

• antisymmetric (bool) – If True, then an antisymmetric version of the matrix is com-
puted (by subtracting the transposed matrix at the end of the computation).

• kwargs – Cf. parent class.

Examples

In the most general syntax, firstly, you define the matrix computation algorithm:

>>> matrix = MatrixWeightedMajority(diagonal_score=.5)

Secondly, you use it as a callable to load a particular election (profile, candidates):

>>> matrix(ballots=['a > b', 'b > a'], weights=[3, 1], voters=['v', 'w'],
→˓candidates={'a', 'b'}) # doctest:+ELLIPSIS
<... object at ...>

Finally, you can access the computed variables:
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>>> matrix.as_array_
array([[Fraction(1, 2), Fraction(3, 4)],

[Fraction(1, 4), Fraction(1, 2)]], dtype=object)

Later, if you wish, you can load another profile with the same matrix computation algorithm, and so on.

Optionally, you can specify an election (profile and candidates) as soon as the Matrix object is initialized.
This allows for “one-liners” such as:

>>> MatrixWeightedMajority(ballots=['a > b', 'b > a'], weights=[3, 1], voters=['x
→˓', 'y'],
... candidates={'a', 'b'}, diagonal_score=.5).as_array_
array([[Fraction(1, 2), Fraction(3, 4)],

[Fraction(1, 4), Fraction(1, 2)]], dtype=object)

Antisymmetric version:

>>> MatrixWeightedMajority(ballots=['a > b', 'b > a'], weights=[3, 1], voters=['x
→˓', 'y'],
... candidates={'a', 'b'}, antisymmetric=True).as_array_
array([[0, Fraction(1, 2)],

[Fraction(-1, 2), 0]], dtype=object)

An “unordered” candidate is a candidate that the voter has seen but not included in her ranking; i.e. it is in the
attribute BallotOrder.candidates_not_in_b of the ballot. An “absent” candidate is a candidate that
the voter has not even seen; i.e. it is in self.candidates_, but not the attribute Ballot.candidates of
the ballot. For all the “scoring” parameters (from higher_vs_lower to absent_vs_absent), the value
None can be used. In that case, the corresponding occurrences are not taken into account in the average (neither
the numerator, not the denominator). Consider this example:

>>> ballots = ['a > b', 'a ~ b']

With indifference=Fraction(1, 2) (default), the ratio of voters who prefer a to b is (1 + 1 / 2) / 2 =
3 / 4 (the indifferent voter gives 1 / 2 point and is counted in the denominator):

>>> MatrixWeightedMajority(ballots).as_array_
array([[0, Fraction(3, 4)],

[Fraction(1, 4), 0]], dtype=object)

With indifference=0, the ratio of voters who prefer a to b is 1 / 2 (the indifferent voter gives no point, but
is counted in the denominator):

>>> MatrixWeightedMajority(ballots, indifference=0).as_array_
array([[0, Fraction(1, 2)],

[0, 0]], dtype=object)

With indifference=None, the ratio of voters who prefer a to b is 1 / 1 = 1 (the indifferent voter is not
counted in the average at all):

>>> MatrixWeightedMajority(ballots, indifference=None).as_array_
array([[0, 1],

[0, 0]])

as_array_
The matrix, as a numpy array. Each row and each column corresponds to a candidate (in the order of
candidates_as_list_).

Type Array
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as_array_of_floats_
The matrix, as a numpy array. It is the same as as_array_, but converted to floats.

Type Array

candidates_as_list_
The list of candidates. Candidates are sorted if possible.

Type list

candidates_indexes_
The candidates as a dictionary. To each candidate, it associates its index in candidates_as_list_.

Type NiceDict

gross_
The “gross” matrix. Keys are pairs of candidates. Each coefficient is the weighted number of points (used
as numerator in the average).

Examples

>>> from whalrus import MatrixWeightedMajority
>>> MatrixWeightedMajority(ballots=['a > b', 'a ~ b'], weights=[2, 1]).gross_
{('a', 'a'): 0, ('a', 'b'): Fraction(5, 2), ('b', 'a'): Fraction(1, 2), ('b',
→˓'b'): 0}

Type NiceDict

weights_
The matrix of weights. Keys are pairs of candidates. Each coefficient is the total weight (used as denomi-
nator in the average).

Examples

In most usual cases, all non-diagonal coefficients are equal, and are equal to the total weight of all voters:

>>> from whalrus import MatrixWeightedMajority
>>> MatrixWeightedMajority(ballots=['a > b', 'a ~ b'], weights=[2, 1]).
→˓weights_
{('a', 'a'): 0, ('a', 'b'): 3, ('b', 'a'): 3, ('b', 'b'): 0}

However, if some scoring parameters are None, some weights can be lower than the total weight of all
voters:

>>> from whalrus import MatrixWeightedMajority
>>> MatrixWeightedMajority(ballots=['a > b', 'a ~ b'], weights=[2, 1],
... indifference=None).weights_
{('a', 'a'): 0, ('a', 'b'): 2, ('b', 'a'): 2, ('b', 'b'): 0}

Type NiceDict
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5.5 Priority

5.5.1 Priority

class whalrus.Priority(name: str)
A priority setting, i.e. a policy to break ties and indifference classes.

Parameters name (str) – The name of this priority setting.

UNAMBIGUOUS
Shortcut for PriorityUnambiguous.

ABSTAIN
Shortcut for PriorityAbstain.

ASCENDING
Shortcut for PriorityAscending.

DESCENDING
Shortcut for PriorityDescending.

RANDOM
Shortcut for PriorityRandom.

Examples

Typical usage:

>>> priority = Priority.ASCENDING
>>> priority.choice({'c', 'a', 'b'})
'a'
>>> priority.sort({'c', 'a', 'b'})
['a', 'b', 'c']

choice(x: Union[set, list], reverse: bool = False)→ object
Choose an element from a list, set, etc.

Parameters

• x (list, set, etc.) – The list, set, etc where the element is to be chosen.

• reverse (bool) – If False (default), then we choose the “first” or “best” element in
this priority order. For example, if this is the ascending priority, we choose the lowest
element. If True, then we choose the “last” or “worst” element. This is used, for example,
in RuleVeto.

Returns The chosen element (or None). When x is empty, return None. When x has one
element, return this element.

Return type object

compare(c, d)→ int
Compare two candidates.

Parameters

• c (candidate) –

• d (candidate.) –

Returns 0 if c = d, -1 if the tie is broken in favor of c over d, 1 otherwise.
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Return type int

sort(x: Union[set, list], reverse: bool = False)→ Optional[list]
Sort a list, set, etc.

The original list x is not modified.

Parameters

• x (list, set, etc.) –

• reverse (bool) – If True, we use the reverse priority order.

Returns A sorted list (or None).

Return type list or None

sort_pairs_rp(x: Union[set, list], reverse: bool = False)→ Optional[list]
Sort a list, set, etc. of pairs of candidates (for Ranked Pairs).

By default, it is in the normal priority order for the first element of the pair, and in the reverse priority order
for the second element of the pair.

The original list x is not modified.

Parameters

• x (list, set, etc.) –

• reverse (bool) – If True, we use the reverse priority order.

Returns A sorted list (or None).

Return type list or None

5.5.2 PriorityAbstain

class whalrus.PriorityAbstain
When there are two elements or more, return None.

Examples

>>> print(Priority.ABSTAIN.choice({'a', 'b'}))
None
>>> print(Priority.ABSTAIN.sort({'a', 'b'}))
None

choice(x: Union[set, list], reverse: bool = False)→ object
Choose an element from a list, set, etc.

Parameters

• x (list, set, etc.) – The list, set, etc where the element is to be chosen.

• reverse (bool) – If False (default), then we choose the “first” or “best” element in
this priority order. For example, if this is the ascending priority, we choose the lowest
element. If True, then we choose the “last” or “worst” element. This is used, for example,
in RuleVeto.

Returns The chosen element (or None). When x is empty, return None. When x has one
element, return this element.
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Return type object

compare(c, d)→ int
Compare two candidates.

Parameters

• c (candidate) –

• d (candidate.) –

Returns 0 if c = d, -1 if the tie is broken in favor of c over d, 1 otherwise.

Return type int

sort(x: Union[set, list], reverse: bool = False)→ Optional[list]
Sort a list, set, etc.

The original list x is not modified.

Parameters

• x (list, set, etc.) –

• reverse (bool) – If True, we use the reverse priority order.

Returns A sorted list (or None).

Return type list or None

sort_pairs_rp(x: Union[set, list], reverse: bool = False)→ Optional[list]
Sort a list, set, etc. of pairs of candidates (for Ranked Pairs).

By default, it is in the normal priority order for the first element of the pair, and in the reverse priority order
for the second element of the pair.

The original list x is not modified.

Parameters

• x (list, set, etc.) –

• reverse (bool) – If True, we use the reverse priority order.

Returns A sorted list (or None).

Return type list or None

5.5.3 PriorityAscending

class whalrus.PriorityAscending
Ascending order (lowest is favoured).

Examples

>>> Priority.ASCENDING.choice({'a', 'b'})
'a'
>>> Priority.ASCENDING.sort({'a', 'b'})
['a', 'b']
>>> Priority.ASCENDING.sort_pairs_rp({('a', 'b'), ('b', 'a'), ('a', 'c')})
[('a', 'c'), ('a', 'b'), ('b', 'a')]
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choice(x: Union[set, list], reverse: bool = False)→ object
Choose an element from a list, set, etc.

Parameters

• x (list, set, etc.) – The list, set, etc where the element is to be chosen.

• reverse (bool) – If False (default), then we choose the “first” or “best” element in
this priority order. For example, if this is the ascending priority, we choose the lowest
element. If True, then we choose the “last” or “worst” element. This is used, for example,
in RuleVeto.

Returns The chosen element (or None). When x is empty, return None. When x has one
element, return this element.

Return type object

compare(c, d)→ int
Compare two candidates.

Parameters

• c (candidate) –

• d (candidate.) –

Returns 0 if c = d, -1 if the tie is broken in favor of c over d, 1 otherwise.

Return type int

sort(x: Union[set, list], reverse: bool = False)→ Optional[list]
Sort a list, set, etc.

The original list x is not modified.

Parameters

• x (list, set, etc.) –

• reverse (bool) – If True, we use the reverse priority order.

Returns A sorted list (or None).

Return type list or None

sort_pairs_rp(x: Union[set, list], reverse: bool = False)→ Optional[list]
Sort a list, set, etc. of pairs of candidates (for Ranked Pairs).

By default, it is in the normal priority order for the first element of the pair, and in the reverse priority order
for the second element of the pair.

The original list x is not modified.

Parameters

• x (list, set, etc.) –

• reverse (bool) – If True, we use the reverse priority order.

Returns A sorted list (or None).

Return type list or None
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5.5.4 PriorityDescending

class whalrus.PriorityDescending
Descending order (highest is favoured).

Examples

>>> Priority.DESCENDING.choice({'a', 'b'})
'b'
>>> Priority.DESCENDING.sort({'a', 'b'})
['b', 'a']
>>> Priority.DESCENDING.sort_pairs_rp({('a', 'b'), ('b', 'a'), ('a', 'c')})
[('b', 'a'), ('a', 'b'), ('a', 'c')]

choice(x: Union[set, list], reverse: bool = False)→ object
Choose an element from a list, set, etc.

Parameters

• x (list, set, etc.) – The list, set, etc where the element is to be chosen.

• reverse (bool) – If False (default), then we choose the “first” or “best” element in
this priority order. For example, if this is the ascending priority, we choose the lowest
element. If True, then we choose the “last” or “worst” element. This is used, for example,
in RuleVeto.

Returns The chosen element (or None). When x is empty, return None. When x has one
element, return this element.

Return type object

compare(c, d)→ int
Compare two candidates.

Parameters

• c (candidate) –

• d (candidate.) –

Returns 0 if c = d, -1 if the tie is broken in favor of c over d, 1 otherwise.

Return type int

sort(x: Union[set, list], reverse: bool = False)→ Optional[list]
Sort a list, set, etc.

The original list x is not modified.

Parameters

• x (list, set, etc.) –

• reverse (bool) – If True, we use the reverse priority order.

Returns A sorted list (or None).

Return type list or None

sort_pairs_rp(x: Union[set, list], reverse: bool = False)→ Optional[list]
Sort a list, set, etc. of pairs of candidates (for Ranked Pairs).
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By default, it is in the normal priority order for the first element of the pair, and in the reverse priority order
for the second element of the pair.

The original list x is not modified.

Parameters

• x (list, set, etc.) –

• reverse (bool) – If True, we use the reverse priority order.

Returns A sorted list (or None).

Return type list or None

5.5.5 PriorityRandom

class whalrus.PriorityRandom
Random order.

Examples

>>> my_choice = Priority.RANDOM.choice({'a', 'b'})
>>> my_choice in {'a', 'b'}
True
>>> my_order = Priority.RANDOM.sort({'a', 'b'})
>>> my_order == ['a', 'b'] or my_order == ['b', 'a']
True

choice(x: Union[set, list], reverse: bool = False)→ object
Choose an element from a list, set, etc.

Parameters

• x (list, set, etc.) – The list, set, etc where the element is to be chosen.

• reverse (bool) – If False (default), then we choose the “first” or “best” element in
this priority order. For example, if this is the ascending priority, we choose the lowest
element. If True, then we choose the “last” or “worst” element. This is used, for example,
in RuleVeto.

Returns The chosen element (or None). When x is empty, return None. When x has one
element, return this element.

Return type object

compare(c, d)→ int
Compare two candidates.

Parameters

• c (candidate) –

• d (candidate.) –

Returns 0 if c = d, -1 if the tie is broken in favor of c over d, 1 otherwise.

Return type int
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sort(x: Union[set, list], reverse: bool = False)→ Optional[list]
Sort a list, set, etc.

The original list x is not modified.

Parameters

• x (list, set, etc.) –

• reverse (bool) – If True, we use the reverse priority order.

Returns A sorted list (or None).

Return type list or None

sort_pairs_rp(x: Union[set, list], reverse: bool = False)→ Optional[list]
Sort a list, set, etc. of pairs of candidates (for Ranked Pairs).

By default, it is in the normal priority order for the first element of the pair, and in the reverse priority order
for the second element of the pair.

The original list x is not modified.

Parameters

• x (list, set, etc.) –

• reverse (bool) – If True, we use the reverse priority order.

Returns A sorted list (or None).

Return type list or None

5.5.6 PriorityUnambiguous

class whalrus.PriorityUnambiguous
When there are two elements or more, raise a ValueError.

Examples

>>> try:
... Priority.UNAMBIGUOUS.choice({'a', 'b'})
... except ValueError:
... print('Cannot choose')
Cannot choose
>>> try:
... Priority.UNAMBIGUOUS.sort({'a', 'b'})
... except ValueError:
... print('Cannot sort')
Cannot sort

choice(x: Union[set, list], reverse: bool = False)→ object
Choose an element from a list, set, etc.

Parameters

• x (list, set, etc.) – The list, set, etc where the element is to be chosen.

• reverse (bool) – If False (default), then we choose the “first” or “best” element in
this priority order. For example, if this is the ascending priority, we choose the lowest
element. If True, then we choose the “last” or “worst” element. This is used, for example,
in RuleVeto.
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Returns The chosen element (or None). When x is empty, return None. When x has one
element, return this element.

Return type object

compare(c, d)→ int
Compare two candidates.

Parameters

• c (candidate) –

• d (candidate.) –

Returns 0 if c = d, -1 if the tie is broken in favor of c over d, 1 otherwise.

Return type int

sort(x: Union[set, list], reverse: bool = False)→ Optional[list]
Sort a list, set, etc.

The original list x is not modified.

Parameters

• x (list, set, etc.) –

• reverse (bool) – If True, we use the reverse priority order.

Returns A sorted list (or None).

Return type list or None

sort_pairs_rp(x: Union[set, list], reverse: bool = False)→ Optional[list]
Sort a list, set, etc. of pairs of candidates (for Ranked Pairs).

By default, it is in the normal priority order for the first element of the pair, and in the reverse priority order
for the second element of the pair.

The original list x is not modified.

Parameters

• x (list, set, etc.) –

• reverse (bool) – If True, we use the reverse priority order.

Returns A sorted list (or None).

Return type list or None

5.6 Profile

class whalrus.Profile(ballots: Union[list, Profile], weights: list = None, voters: list = None)
A profile of ballots.

Parameters

• ballots (iterable) – Typically, it is a list, but it can also be a Profile. Its el-
ements must be Ballot objects or, more generally, inputs that can be interpreted by
ConverterBallotGeneral.

• weights (list) – A list of numbers representing the weights of the ballots. Default: if
ballots is a Profile, then use the weights of this profile; otherwise, all weights are 1.
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• voters (list) – A list representing the voters corresponding to the ballots. Default: if
ballots is a Profile, then use the voters of this profile; otherwise, all voters are None.

Examples

Most general syntax:

>>> profile = Profile(
... ballots=[BallotOrder('a > b ~ c'), BallotOrder('a ~ b > c')],
... weights=[2, 1],
... voters=['Alice', 'Bob']
... )
>>> print(profile)
Alice (2): a > b ~ c
Bob (1): a ~ b > c

In the following example, each ballot illustrates a different syntax:

>>> profile = Profile([
... ['a', 'b', 'c'],
... ('b', 'c', 'a'),
... 'c > a > b',
... ])
>>> print(profile)
a > b > c
b > c > a
c > a > b

Profiles have a list-like behavior in the sense that they implement __len__, __getitem__, __setitem__
and __delitem__:

>>> profile = Profile(['a > b', 'b > a', 'a ~ b'])
>>> len(profile)
3
>>> profile[0]
BallotOrder(['a', 'b'], candidates={'a', 'b'})
>>> profile[0] = 'a ~ b'
>>> print(profile)
a ~ b
b > a
a ~ b
>>> del profile[0]
>>> print(profile)
b > a
a ~ b

Profiles can be concatenated:

>>> profile = Profile(['a > b', 'b > a']) + ['a ~ b']
>>> print(profile)
a > b
b > a
a ~ b

Profiles can be multiplied by a scalar, which multiplies the weights:
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>>> profile = Profile(['a > b', 'b > a']) * 3
>>> print(profile)
(3): a > b
(3): b > a

append(ballot: object, weight: numbers.Number = 1, voter: object = None)→ None
Append a ballot to the profile.

Parameters

• ballot (object) – A ballot or, more generally, an input that can be interpreted by
ConverterBallotGeneral.

• weight (Number) – The weight of the ballot.

• voter (object) – The voter.

Examples

>>> profile = Profile(['a > b'])
>>> profile.append('b > a')
>>> print(profile)
a > b
b > a

ballots
The ballots.

Examples

>>> profile = Profile(['a > b', 'b > a'])
>>> profile.ballots
[BallotOrder(['a', 'b'], candidates={'a', 'b'}), BallotOrder(['b', 'a'],
→˓candidates={'a', 'b'})]

Type list of Ballot

has_voters
Presence of explicit voters. True iff at least one voter is not None.

Examples

>>> profile = Profile(['a > b', 'b > a'])
>>> profile.has_voters
False

Type bool

has_weights
Presence of non-trivial weights. True iff at least one weight is not 1.
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Examples

>>> profile = Profile(['a > b', 'b > a'])
>>> profile.has_weights
False

Type bool

items()→ Iterator[T_co]
Items of the profile.

Returns A zip of triples (ballot, weight, voter).

Return type Iterator

Examples

>>> profile = Profile(['a > b', 'b > a'])
>>> for ballot, weight, voter in profile.items():
... print('Ballot %s, weight %s, voter %s.' % (ballot, weight, voter))
Ballot a > b, weight 1, voter None.
Ballot b > a, weight 1, voter None.

remove(ballot: object = None, voter: object = None)→ None
Remove a ballot from the profile.

If only the ballot is specified, remove the first matching ballot in the profile. If only the voter is specified,
remove the first ballot whose voter matches the given voter. If both are specified, remove the first ballot
matching both descriptions.

Parameters

• ballot (object) – The ballot or, more generally, an input that can be interpreted by
ConverterBallotGeneral.

• voter (object) – The voter.

Examples

>>> profile = Profile(['a > b', 'b > a'])
>>> profile.remove('b > a')
>>> print(profile)
a > b

voters
The voters.

Examples

>>> profile = Profile(['a > b', 'b > a'], voters=['Alice', 'Bob'])
>>> profile.voters
['Alice', 'Bob']

Type list
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weights
The weights.

Examples

>>> profile = Profile(['a > b', 'b > a'])
>>> profile.weights
[1, 1]

Type list of Number

5.7 Rule: In General

5.7.1 Rule

class whalrus.Rule(*args, tie_break: whalrus.priorities.priority.Priority = Priority.UNAMBIGUOUS,
converter: whalrus.converters_ballot.converter_ballot.ConverterBallot = None,
**kwargs)

A voting rule.

A Rule object is a callable whose inputs are ballots and optionally weights, voters and candidates. When the
rule is called, it loads the profile. The output of the call is the rule itself. But after the call, you can access to the
computed variables (ending with an underscore), such as cowinners_.

At the initialization of a Rule object, some options can be given, such as a tie-break rule or a converter. In
some subclasses, there can also be an option about the way to count abstentions, etc.

Parameters

• args – If present, these parameters will be passed to __call__ immediately after initial-
ization.

• tie_break (Priority) – A tie-break rule.

• converter (ConverterBallot) – The converter that is used to convert input ballots
in order to compute profile_converted_. Default: ConverterBallotGeneral.

• kwargs – If present, these parameters will be passed to __call__ immediately after
initialization.

profile_original_
The profile as it is entered by the user. Since it uses the constructor of Profile, it indirectly uses
ConverterBallotGeneral to ensure, for example, that strings like 'a > b > c' are converted to
Ballot objects.

Type Profile

profile_converted_
The profile, with ballots that are adapted to the voting rule. For example, in RulePlurality , it will
be BallotPlurality objects, even if the original ballots are BallotOrder objects. This uses the
parameter converter of the rule.

Type Profile

candidates_
The candidates of the election, as entered in the __call__.
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Type NiceSet

Examples

Cf. RulePlurality for some examples.

cotrailers_
“Cotrailers” of the election, i.e. the candidates that fare worst in the election. This is the last equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the worst score.

Type NiceSet

cowinners_
Cowinners of the election, i.e. the candidates that fare best in the election.. This is the first equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the best score.

Type NiceSet

n_candidates_
Number of candidates.

Type int

order_
Result of the election as a (weak) order over the candidates. This is a list of NiceSet. The first set
contains the candidates that are tied for victory, etc.

Type list

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

5.7.2 RuleIteratedElimination

class whalrus.RuleIteratedElimination(*args, base_rule: whalrus.rules.rule.Rule
= None, elimination: whal-
rus.eliminations.elimination.Elimination = None,
propagate_tie_break=True, **kwargs)

A rule by iterated elimination (such as RuleIRV , RuleCoombs, RuleNanson, etc.)

Parameters

• args – Cf. parent class.
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• base_rule (Rule) – The rule used at each round to determine the eliminated candi-
date(s). Unlike for RuleSequentialElimination, all the rounds use the same voting
rule.

• elimination (Elimination) – The elimination algorithm. Default:
EliminationLast(k=1).

• propagate_tie_break (bool) – If True (default), then the tie-breaking rule of this
object is also used for the base rule (cf. below).

• kwargs – Cf. parent class.

Examples

>>> irv = RuleIteratedElimination(['a > b > c', 'b > a > c', 'c > a > b'],
→˓weights=[2, 3, 4],
... base_rule=RulePlurality())
>>> irv.eliminations_[0].rule_.gross_scores_
{'a': 2, 'b': 3, 'c': 4}
>>> irv.eliminations_[1].rule_.gross_scores_
{'b': 5, 'c': 4}
>>> irv.eliminations_[2].rule_.gross_scores_
{'b': 9}
>>> irv.winner_
'b'

Remark: there exists a shortcut for the above rule in particular, the class RuleIRV .

By default, propagate_tie_break is True. So if you want to specify a tie-breaking rule, just do it in the
parameters of this object, and it will also be used in the base rule. This is probably what you want to do:

>>> irv = RuleIteratedElimination(['a > c > b', 'b > a > c', 'c > a > b'],
→˓weights=[1, 2, 1],
... base_rule=RulePlurality(), tie_break=Priority.
→˓ASCENDING)
>>> irv.eliminations_[0].rule_.gross_scores_
{'a': 1, 'b': 2, 'c': 1}
>>> irv.eliminations_[1].rule_.gross_scores_
{'a': 2, 'b': 2}
>>> irv.eliminations_[2].rule_.gross_scores_
{'a': 4}
>>> irv.winner_
'a'

If propagate_tie_break is False, then there is a subtlety between the tie-breaking rule of this object, and
the tie-breaking rule of the base rule. The following (somewhat contrived) example illustrates the respective
roles of the two tie-breaking rules.

>>> rule = RuleIteratedElimination(
... ['a', 'b', 'c', 'd', 'e'], weights=[3, 2, 2, 2, 1],
... tie_break=Priority.DESCENDING, propagate_tie_break=False,
... base_rule=RulePlurality(tie_break=Priority.ASCENDING),
→˓elimination=EliminationLast(k=2))
>>> rule.eliminations_[0].rule_.gross_scores_
{'a': 3, 'b': 2, 'c': 2, 'd': 2, 'e': 1}

With the worst score, e is eliminated anyway, but we need to eliminate a second candidate because k = 2. In
Plurality, b, c and d are tied, but since Plurality’s tie-breaking rule is ASCENDING, candidates b or c get an
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advantage over d. Hence d is eliminated:

>>> rule.eliminations_[0].eliminated_
{'d', 'e'}

Note that the tie-breaking rule of the base rule (here Plurality) is always sufficient to compute the weak order
over the candidates. This order may be finer than the elimination order, because being eliminated at the same
time does not mean being tied, as d and e illustrate here:

>>> rule.order_
[{'a'}, {'b', 'c'}, {'d'}, {'e'}]

So, where does the tie-breaking rule of this object come in? It is simply used to get the strict order over the
candidates, as usual in a Rule. In our example, since it is DESCENDING, candidate c gets an advantage over
b:

>>> rule.strict_order_
['a', 'c', 'b', 'd', 'e']

cotrailers_
“Cotrailers” of the election, i.e. the candidates that fare worst in the election. This is the last equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the worst score.

Type NiceSet

cowinners_
Cowinners of the election, i.e. the candidates that fare best in the election.. This is the first equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the best score.

Type NiceSet

eliminations_
The elimination rounds. A list of Elimination objects. The first one corresponds to the first round, etc.

Type list

n_candidates_
Number of candidates.

Type int

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object
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5.7.3 RuleScore

class whalrus.RuleScore(*args, tie_break: whalrus.priorities.priority.Priority
= Priority.UNAMBIGUOUS, converter: whal-
rus.converters_ballot.converter_ballot.ConverterBallot = None,
**kwargs)

A voting rule with scores (which are not necessarily numbers).

Each candidate is assigned a score (not necessarily a number), and the the cowinners are the candidates with the
best score, in the sense defined by compare_scores().

best_score_
The best score.

Type object

compare_scores(one: object, another: object)→ int
Compare two scores.

Parameters

• one (object) – A score.

• another (object) – A score.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

cotrailers_
“Cotrailers”. The set of candidates with the worst score.

Type NiceSet

cowinners_
Cowinners. The set of candidates with the best score.

Type NiceSet

n_candidates_
Number of candidates.

Type int

order_
Result of the election as a (weak) order over the candidates. It is a list of NiceSet. The first set contains
the candidates that have the best score, the second set contains those with the second best score, etc.

Type list

scores_
The scores. To each candidate, this dictionary assigns a score (non necessarily a number).

Type NiceDict

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.
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Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

worst_score_
The worst score.

Type object

5.7.4 RuleScoreNum

class whalrus.RuleScoreNum(*args, tie_break: whalrus.priorities.priority.Priority
= Priority.UNAMBIGUOUS, converter: whal-
rus.converters_ballot.converter_ballot.ConverterBallot = None,
**kwargs)

A voting rule with numeric scores.

This is a voting rule where each candidate is assigned a numeric score, and the candidates with the best score
are declared the cowinners.

average_score_
The average score.

Type Number

average_score_as_float_
The average score as a float. It is the same as average_score_, but converted to a float.

Type float

best_score_as_float_
The best score as a float. It is the same as RuleScore.best_score_, but converted to a float.

Type float

compare_scores(one: numbers.Number, another: numbers.Number)→ int
Compare two scores.

Parameters

• one (object) – A score.

• another (object) – A score.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

cotrailers_
“Cotrailers”. The set of candidates with the worst score.

Type NiceSet

cowinners_
Cowinners. The set of candidates with the best score.

Type NiceSet
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n_candidates_
Number of candidates.

Type int

scores_
The scores. To each candidate, this dictionary assigns a numeric score.

Type NiceDict

scores_as_floats_
Scores as floats. It is the same as scores_, but converted to floats.

Type NiceDict

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

worst_score_as_float_
The worst score as a float. It is the same as RuleScore.worst_score_, but converted to a float.

Type float

5.7.5 RuleScoreNumAverage

class whalrus.RuleScoreNumAverage(*args, scorer: whalrus.scorers.scorer.Scorer = None, de-
fault_average: numbers.Number = 0, **kwargs)

A voting rule where each candidate’s score is an average of the scores provided by the ballots.

Parameters

• args – Cf. parent class.

• scorer (Scorer) – For each ballot, it is in charge of computing its contribution to each
candidate’s score.

• default_average (Number) – The default average score of a candidate when it re-
ceives no score whatsoever. It may happen, for example, if all voters abstain about this
candidate. This avoids a division by zero when computing this candidate’s average score.

• kwargs – Cf. parent class.

Examples

Cf. RuleRangeVoting for some examples.
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average_score_
The average score.

Type Number

average_score_as_float_
The average score as a float. It is the same as average_score_, but converted to a float.

Type float

best_score_as_float_
The best score as a float. It is the same as RuleScore.best_score_, but converted to a float.

Type float

compare_scores(one: numbers.Number, another: numbers.Number)→ int
Compare two scores.

Parameters

• one (object) – A score.

• another (object) – A score.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

cotrailers_
“Cotrailers”. The set of candidates with the worst score.

Type NiceSet

cowinners_
Cowinners. The set of candidates with the best score.

Type NiceSet

gross_scores_
The gross scores of the candidates. For each candidate, this dictionary gives the sum of its scores, multi-
plied by the weights of the corresponding voters. This is the numerator in the candidate’s average score.

Type NiceDict

gross_scores_as_floats_
Gross scores as floats. It is the same as gross_scores_, but converted to floats.

Type NiceDict

n_candidates_
Number of candidates.

Type int

scores_as_floats_
Scores as floats. It is the same as scores_, but converted to floats.

Type NiceDict

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list
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trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

weights_
The weights used for the candidates. For each candidate, this dictionary gives the total weight for this
candidate, i.e. the total weight of all voters who assign a score to this candidate. This is the denominator
in the candidate’s average score.

Type NiceDict

weights_as_floats_
Weights as floats. It is the same as weights_, but converted to floats.

Type NiceDict

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

worst_score_as_float_
The worst score as a float. It is the same as RuleScore.worst_score_, but converted to a float.

Type float

5.7.6 RuleScoreNumRowSum

class whalrus.RuleScoreNumRowSum(*args, matrix: whalrus.matrices.matrix.Matrix = None,
**kwargs)

Rule where the winner is the candidate having the highest row sum in some matrix.

The score of a candidate is the sum of the non-diagonal elements of its row in matrix_.

Parameters

• args – Cf. parent class.

• matrix (Matrix) – The matrix upon which the scores are based.

• kwargs – Cf. parent class.

average_score_
The average score.

Type Number

average_score_as_float_
The average score as a float. It is the same as average_score_, but converted to a float.

Type float

best_score_as_float_
The best score as a float. It is the same as RuleScore.best_score_, but converted to a float.

Type float

compare_scores(one: numbers.Number, another: numbers.Number)→ int
Compare two scores.

Parameters
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• one (object) – A score.

• another (object) – A score.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

cotrailers_
“Cotrailers”. The set of candidates with the worst score.

Type NiceSet

cowinners_
Cowinners. The set of candidates with the best score.

Type NiceSet

matrix_
The matrix (once computed with the given profile).

Type Matrix

n_candidates_
Number of candidates.

Type int

scores_as_floats_
Scores as floats. It is the same as scores_, but converted to floats.

Type NiceDict

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

worst_score_as_float_
The worst score as a float. It is the same as RuleScore.worst_score_, but converted to a float.

Type float

5.7.7 RuleScorePositional

class whalrus.RuleScorePositional(*args, converter: whal-
rus.converters_ballot.converter_ballot.ConverterBallot
= None, points_scheme: list = None, **kwargs)

A positional scoring rule.
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Parameters

• args – Cf. parent class.

• converter (ConverterBallot) – Default: ConverterBallotToStrictOrder.

• points_scheme (list) – The list of points to be attributed to the candidates of a ballot.
Cf. ScorerPositional.

• kwargs – Cf. parent class.

Examples

>>> RuleScorePositional(['a > b > c', 'b > c > a'], points_scheme=[3, 2, 1]).
→˓gross_scores_
{'a': 4, 'b': 5, 'c': 3}

Since this voting rule needs strict orders, problems may occur as soon as there is indifference in the ballots. To
avoid these issues, specify the ballot converter explicitly:

>>> RuleScorePositional(['a > b ~ c', 'b > c > a'], points_scheme=[1, 1, 0],
... converter=ConverterBallotToStrictOrder(priority=Priority.ASCENDING)).
→˓gross_scores_
{'a': 1, 'b': 2, 'c': 1}

average_score_
The average score.

Type Number

average_score_as_float_
The average score as a float. It is the same as average_score_, but converted to a float.

Type float

best_score_as_float_
The best score as a float. It is the same as RuleScore.best_score_, but converted to a float.

Type float

compare_scores(one: numbers.Number, another: numbers.Number)→ int
Compare two scores.

Parameters

• one (object) – A score.

• another (object) – A score.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

cotrailers_
“Cotrailers”. The set of candidates with the worst score.

Type NiceSet

cowinners_
Cowinners. The set of candidates with the best score.

Type NiceSet
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gross_scores_
The gross scores of the candidates. For each candidate, this dictionary gives the sum of its scores, multi-
plied by the weights of the corresponding voters. This is the numerator in the candidate’s average score.

Type NiceDict

gross_scores_as_floats_
Gross scores as floats. It is the same as gross_scores_, but converted to floats.

Type NiceDict

n_candidates_
Number of candidates.

Type int

scores_as_floats_
Scores as floats. It is the same as scores_, but converted to floats.

Type NiceDict

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

weights_
The weights used for the candidates. For each candidate, this dictionary gives the total weight for this
candidate, i.e. the total weight of all voters who assign a score to this candidate. This is the denominator
in the candidate’s average score.

Type NiceDict

weights_as_floats_
Weights as floats. It is the same as weights_, but converted to floats.

Type NiceDict

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

worst_score_as_float_
The worst score as a float. It is the same as RuleScore.worst_score_, but converted to a float.

Type float

5.7.8 RuleSequentialElimination

class whalrus.RuleSequentialElimination(*args, rules: Union[list, whalrus.rules.rule.Rule]
= None, eliminations: Union[list, whal-
rus.eliminations.elimination.Elimination] =
None, propagate_tie_break=True, **kwargs)

A rule by sequential elimination (such as RuleTwoRound).
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Parameters

• args – Cf. parent class.

• rules (list of Rule) – A list of rules, one for each round. Unlike for
RuleIteratedElimination, different rounds may use different voting rules.

• eliminations (list of Elimination) – A list of elimination algorithms, one for
each round except the last one.

• propagate_tie_break (bool) – If True (default), then the tie-breaking rule of this
object is also used for the base rules. Cf. RuleIteratedElimination for more ex-
planation on this parameter.

• kwargs – Cf. parent class.

Examples

>>> rule = RuleSequentialElimination(
... ['a > b > c > d > e', 'b > c > d > e > a'], weights=[2, 1],
... rules=[RuleBorda(), RulePlurality(), RulePlurality()],
... eliminations=[EliminationBelowAverage(), EliminationLast(k=1)])
>>> rule.elimination_rounds_[0].rule_.gross_scores_
{'a': 8, 'b': 10, 'c': 7, 'd': 4, 'e': 1}
>>> rule.elimination_rounds_[1].rule_.gross_scores_
{'a': 2, 'b': 1, 'c': 0}
>>> rule.final_round_.gross_scores_
{'a': 2, 'b': 1}

If rules is not a list, the number of rounds is inferred from eliminations. An application of this is to
define the two-round system:

>>> rule = RuleSequentialElimination(
... ['a > b > c > d > e', 'b > a > c > d > e', 'c > a > b > d > e'],
→˓weights=[2, 2, 1],
... rules=RulePlurality(), eliminations=[EliminationLast(k=-2)])
>>> rule.elimination_rounds_[0].rule_.gross_scores_
{'a': 2, 'b': 2, 'c': 1, 'd': 0, 'e': 0}
>>> rule.final_round_.gross_scores_
{'a': 3, 'b': 2}

Note: there exists a shortcut for the above rule in particular, the class RuleTwoRound.

Similarly, if elimination is not a list, the number of rounds is deduced from rules:

>>> rule = RuleSequentialElimination(
... ['a > b > c > d > e', 'b > a > c > d > e'], weights=[2, 1],
... rules=[RuleBorda(), RuleBorda(), RulePlurality()],
→˓eliminations=EliminationLast(k=1))
>>> rule.elimination_rounds_[0].rule_.gross_scores_
{'a': 11, 'b': 10, 'c': 6, 'd': 3, 'e': 0}
>>> rule.elimination_rounds_[1].rule_.gross_scores_
{'a': 8, 'b': 7, 'c': 3, 'd': 0}
>>> rule.final_round_.gross_scores_
{'a': 2, 'b': 1, 'c': 0}

cotrailers_
“Cotrailers” of the election, i.e. the candidates that fare worst in the election. This is the last equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the worst score.
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Type NiceSet

cowinners_
Cowinners of the election, i.e. the candidates that fare best in the election.. This is the first equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the best score.

Type NiceSet

elimination_rounds_
The elimination rounds. A list of Elimination objects. All rounds except the last one.

Type list

final_round_
The final round, which decides the winner of the election.

Type Rule

n_candidates_
Number of candidates.

Type int

rounds_
The rounds. All rounds but the last one are Elimination objects. The last one is a Rule object.

Examples

Note that in some cases, there may be fewer actual rounds than declared in the definition of the rule:

>>> rule = RuleSequentialElimination(
... ['a > b > c > d', 'a > c > d > b', 'a > d > b > c'],
... rules=[RuleBorda(), RulePlurality(), RulePlurality()],
... eliminations=[EliminationBelowAverage(), EliminationLast(k=1)])
>>> len(rule.rounds_)
2
>>> rule.elimination_rounds_[0].rule_.gross_scores_
{'a': 9, 'b': 3, 'c': 3, 'd': 3}
>>> rule.final_round_.gross_scores_
{'a': 3}

Type list

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object
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5.7.9 RuleSequentialTieBreak

class whalrus.RuleSequentialTieBreak(*args, rules: list = None, **kwargs)
A rule by sequential tie-break.

Parameters

• args – Cf. parent class.

• rules (list of Rule) –

• kwargs – Cf. parent class.

Examples

The winner is determined by the first rule. If there is a tie, it is broken by the second rule. Etc. There may still
be a tie at the end: in that case, it is broken by the tie-breaking rule of this object.

>>> rule = RuleSequentialTieBreak(
... ['a > d > e > b > c', 'b > d > e > a > c', 'c > d > e > a > b',
... 'd > e > b > a > c', 'e > d > b > a > c'],
... weights=[2, 2, 2, 1, 1],
... rules=[RulePlurality(), RuleBorda()], tie_break=Priority.ASCENDING)
>>> rule.rules_[0].gross_scores_
{'a': 2, 'b': 2, 'c': 2, 'd': 1, 'e': 1}
>>> rule.rules_[1].gross_scores_
{'a': 14, 'b': 14, 'c': 8, 'd': 25, 'e': 19}
>>> rule.order_
[{'a', 'b'}, {'c'}, {'d'}, {'e'}]
>>> rule.winner_
'a'

cotrailers_
“Cotrailers” of the election, i.e. the candidates that fare worst in the election. This is the last equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the worst score.

Type NiceSet

cowinners_
Cowinners of the election, i.e. the candidates that fare best in the election.. This is the first equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the best score.

Type NiceSet

n_candidates_
Number of candidates.

Type int

rules_
The rules (once applied to the profile).

Type list

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list
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trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

5.8 Rule: In Particular

5.8.1 RuleApproval

class whalrus.RuleApproval(*args, converter: whalrus.converters_ballot.converter_ballot.ConverterBallot
= None, **kwargs)

Approval voting.

Parameters

• args – Cf. parent class.

• converter (ConverterBallot) – Default: ConverterBallotToGrades(scale=ScaleRange(0,
1)). This is the only difference with the parent class RuleRangeVoting.

• kwargs – Cf. parent class.

Examples

>>> RuleApproval([{'a': 1, 'b': 0, 'c': 0}, {'a': 1, 'b': 1, 'c': 0}]).gross_
→˓scores_
{'a': 2, 'b': 1, 'c': 0}

average_score_
The average score.

Type Number

average_score_as_float_
The average score as a float. It is the same as average_score_, but converted to a float.

Type float

best_score_as_float_
The best score as a float. It is the same as RuleScore.best_score_, but converted to a float.

Type float

compare_scores(one: numbers.Number, another: numbers.Number)→ int
Compare two scores.

Parameters

• one (object) – A score.

• another (object) – A score.
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Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

cotrailers_
“Cotrailers”. The set of candidates with the worst score.

Type NiceSet

cowinners_
Cowinners. The set of candidates with the best score.

Type NiceSet

gross_scores_
The gross scores of the candidates. For each candidate, this dictionary gives the sum of its scores, multi-
plied by the weights of the corresponding voters. This is the numerator in the candidate’s average score.

Type NiceDict

gross_scores_as_floats_
Gross scores as floats. It is the same as gross_scores_, but converted to floats.

Type NiceDict

n_candidates_
Number of candidates.

Type int

scores_as_floats_
Scores as floats. It is the same as scores_, but converted to floats.

Type NiceDict

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

weights_
The weights used for the candidates. For each candidate, this dictionary gives the total weight for this
candidate, i.e. the total weight of all voters who assign a score to this candidate. This is the denominator
in the candidate’s average score.

Type NiceDict

weights_as_floats_
Weights as floats. It is the same as weights_, but converted to floats.

Type NiceDict

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object
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worst_score_as_float_
The worst score as a float. It is the same as RuleScore.worst_score_, but converted to a float.

Type float

5.8.2 RuleBaldwin

class whalrus.RuleBaldwin(*args, base_rule: whalrus.rules.rule.Rule = None, elimination: whal-
rus.eliminations.elimination.Elimination = None, **kwargs)

Baldwin’s rule.

At each round, the candidate with the lowest Borda score is eliminated.

Parameters

• args – Cf. parent class.

• base_rule (Rule) – Default: RuleBorda.

• elimination (Elimination) – Default: EliminationLast with k=1.

• kwargs – Cf. parent class.

Examples

>>> rule = RuleBaldwin(['a > b > c', 'a > b ~ c'])
>>> rule.eliminations_[0].rule_.gross_scores_
{'a': 4, 'b': Fraction(3, 2), 'c': Fraction(1, 2)}
>>> rule.eliminations_[1].rule_.gross_scores_
{'a': 2, 'b': 0}
>>> rule.eliminations_[2].rule_.gross_scores_
{'a': 0}
>>> rule.winner_
'a'

cotrailers_
“Cotrailers” of the election, i.e. the candidates that fare worst in the election. This is the last equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the worst score.

Type NiceSet

cowinners_
Cowinners of the election, i.e. the candidates that fare best in the election.. This is the first equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the best score.

Type NiceSet

eliminations_
The elimination rounds. A list of Elimination objects. The first one corresponds to the first round, etc.

Type list

n_candidates_
Number of candidates.

Type int

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.
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Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

5.8.3 RuleBlack

class whalrus.RuleBlack(*args, rule_condorcet: whalrus.rules.rule.Rule = None, rule_borda: whal-
rus.rules.rule.Rule = None, **kwargs)

Black’s rule.

Parameters

• args – Cf. parent class.

• rule_condorcet (Rule) – Used as the main victory criterion. Default:
RuleCondorcet.

• rule_borda (Rule) – Used as the secondary victory criterion. Default: RuleBorda.

• kwargs – Cf. parent class.

Examples

As a main victory criterion, the Condorcet winner is elected (even if it does not have the highest Borda score):

>>> rule = RuleBlack(ballots=['a > b > c', 'b > c > a'], weights=[3, 2])
>>> rule.rule_condorcet_.matrix_majority_.matrix_weighted_majority_.as_array_
array([[0, Fraction(3, 5), Fraction(3, 5)],

[Fraction(2, 5), 0, 1],
[Fraction(2, 5), 0, 0]], dtype=object)

>>> rule.order_
[{'a'}, {'b'}, {'c'}]

When there is no Condorcet winner, candidates are sorted according to their Borda scores:

>>> rule = RuleBlack(ballots=['a > b > c', 'b > c > a', 'c > a > b'], weights=[3,
→˓2, 2])
>>> rule.rule_condorcet_.matrix_majority_.matrix_weighted_majority_.as_array_
array([[0, Fraction(5, 7), Fraction(3, 7)],

[Fraction(2, 7), 0, Fraction(5, 7)],
[Fraction(4, 7), Fraction(2, 7), 0]], dtype=object)

>>> rule.order_
[{'a'}, {'b'}, {'c'}]

cotrailers_
“Cotrailers” of the election, i.e. the candidates that fare worst in the election. This is the last equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the worst score.

Type NiceSet
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cowinners_
Cowinners of the election, i.e. the candidates that fare best in the election.. This is the first equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the best score.

Type NiceSet

n_candidates_
Number of candidates.

Type int

rule_borda_
The Borda rule (once applied to the profile).

Examples

>>> rule = RuleBlack(ballots=['a > b > c', 'b > c > a'], weights=[3, 2])
>>> rule.rule_borda_.scores_
{'a': Fraction(6, 5), 'b': Fraction(7, 5), 'c': Fraction(2, 5)}

Type Rule

rule_condorcet_
The Condorcet rule (once applied to the profile).

Examples

>>> rule = RuleBlack(ballots=['a > b > c', 'b > c > a'], weights=[3, 2])
>>> rule.rule_condorcet_.matrix_majority_.as_array_
array([[Fraction(1, 2), 1, 1],

[0, Fraction(1, 2), 1],
[0, 0, Fraction(1, 2)]], dtype=object)

Type Rule

rules_
The rules (once applied to the profile).

Type list

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

80 Chapter 5. Reference



Whalrus Documentation, Release 0.4.6

5.8.4 RuleBorda

class whalrus.RuleBorda(*args, converter: whalrus.converters_ballot.converter_ballot.ConverterBallot
= None, scorer: whalrus.scorers.scorer.Scorer = None, **kwargs)

The Borda rule.

Parameters

• args – Cf. parent class.

• converter (ConverterBallot) – Default: ConverterBallotToOrder.

• scorer (Scorer) – Default: ScorerBorda.

• kwargs – Cf. parent class.

Examples

>>> rule = RuleBorda(['a ~ b > c', 'b > c > a'])
>>> rule.gross_scores_
{'a': Fraction(3, 2), 'b': Fraction(7, 2), 'c': 1}
>>> rule.scores_
{'a': Fraction(3, 4), 'b': Fraction(7, 4), 'c': Fraction(1, 2)}

average_score_
The average score.

Type Number

average_score_as_float_
The average score as a float. It is the same as average_score_, but converted to a float.

Type float

best_score_as_float_
The best score as a float. It is the same as RuleScore.best_score_, but converted to a float.

Type float

compare_scores(one: numbers.Number, another: numbers.Number)→ int
Compare two scores.

Parameters

• one (object) – A score.

• another (object) – A score.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

cotrailers_
“Cotrailers”. The set of candidates with the worst score.

Type NiceSet

cowinners_
Cowinners. The set of candidates with the best score.

Type NiceSet
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gross_scores_
The gross scores of the candidates. For each candidate, this dictionary gives the sum of its scores, multi-
plied by the weights of the corresponding voters. This is the numerator in the candidate’s average score.

Type NiceDict

gross_scores_as_floats_
Gross scores as floats. It is the same as gross_scores_, but converted to floats.

Type NiceDict

n_candidates_
Number of candidates.

Type int

scores_as_floats_
Scores as floats. It is the same as scores_, but converted to floats.

Type NiceDict

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

weights_
The weights used for the candidates. For each candidate, this dictionary gives the total weight for this
candidate, i.e. the total weight of all voters who assign a score to this candidate. This is the denominator
in the candidate’s average score.

Type NiceDict

weights_as_floats_
Weights as floats. It is the same as weights_, but converted to floats.

Type NiceDict

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

worst_score_as_float_
The worst score as a float. It is the same as RuleScore.worst_score_, but converted to a float.

Type float

82 Chapter 5. Reference



Whalrus Documentation, Release 0.4.6

5.8.5 RuleBucklinByRounds

class whalrus.RuleBucklinByRounds(*args, converter: whal-
rus.converters_ballot.converter_ballot.ConverterBallot
= None, scorer: whal-
rus.scorers.scorer_bucklin.ScorerBucklin = None,
**kwargs)

Bucklin’s rule (round by round version).

During the first round, a candidate’s score is the proportion of voters who rank it first. During the second round,
its score is the proportion of voters who rank it first or second. Etc. More precisely, at each round, the scorer
is used with k equal to the round number; cf. ScorerBucklin.

For another variant of Bucklin’s rule, cf. RuleBucklinInstant.

Parameters

• args – Cf. parent class.

• converter (ConverterBallot) – Default: ConverterBallotToOrder.

• scorer (Scorer) – Default: ScorerBucklin.

• kwargs – Cf. parent class.

Examples

>>> rule = RuleBucklinByRounds(['a > b > c > d', 'b > a > c > d',
... 'c > a > b > d', 'd > a > b > c'])
>>> rule.detailed_scores_[0]
{'a': Fraction(1, 4), 'b': Fraction(1, 4), 'c': Fraction(1, 4), 'd': Fraction(1,
→˓4)}
>>> rule.detailed_scores_[1]
{'a': 1, 'b': Fraction(1, 2), 'c': Fraction(1, 4), 'd': Fraction(1, 4)}
>>> rule.n_rounds_
2
>>> rule.scores_
{'a': 1, 'b': Fraction(1, 2), 'c': Fraction(1, 4), 'd': Fraction(1, 4)}
>>> rule.winner_
'a'

average_score_
The average score.

Type Number

average_score_as_float_
The average score as a float. It is the same as average_score_, but converted to a float.

Type float

best_score_as_float_
The best score as a float. It is the same as RuleScore.best_score_, but converted to a float.

Type float

compare_scores(one: numbers.Number, another: numbers.Number)→ int
Compare two scores.

Parameters

• one (object) – A score.
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• another (object) – A score.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

cotrailers_
“Cotrailers”. The set of candidates with the worst score.

Type NiceSet

cowinners_
Cowinners. The set of candidates with the best score.

Type NiceSet

detailed_scores_
Detailed scores. A list of NiceDict. The first dictionary gives the scores of the first round, etc.

Type list

detailed_scores_as_floats_
Detailed scores, as floats. It is the same as detailed_scores_, but converted to floats.

Examples

>>> rule = RuleBucklinByRounds(['a > b > c > d', 'b > a > c > d',
... 'c > a > b > d', 'd > a > b > c'])
>>> rule.detailed_scores_as_floats_[0]
{'a': 0.25, 'b': 0.25, 'c': 0.25, 'd': 0.25}
>>> rule.detailed_scores_as_floats_[1]
{'a': 1.0, 'b': 0.5, 'c': 0.25, 'd': 0.25}

Type list

n_candidates_
Number of candidates.

Type int

n_rounds_
The number of rounds.

Type int

scores_
The scores. For each candidate, it gives its score during the final round, i.e. the first round where at least
one candidate has a score above 1 / 2.

Type NiceDict

scores_as_floats_
Scores as floats. It is the same as scores_, but converted to floats.

Type NiceDict

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list
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trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

worst_score_as_float_
The worst score as a float. It is the same as RuleScore.worst_score_, but converted to a float.

Type float

5.8.6 RuleBucklinInstant

class whalrus.RuleBucklinInstant(*args, converter: whalrus.converters_ballot.converter_ballot.ConverterBallot
= None, scorer: whalrus.scorers.scorer.Scorer = None, de-
fault_median: object = 0, **kwargs)

Bucklin’s rule (instant version).

For each candidate, its median Borda score m is computed. Let x be the number of voters who give this can-
didate a Borda score that is greater or equal to m. Then the candidate’s score is (m, x). Scores are compared
lexicographically.

When preferences are strict orders, it is equivalent to say that:

• The candidate with the lowest median rank is declared the winner.

• If several candidates have the lowest median rank, this tie is broken by examining how many voters rank
each of them with this rank or better.

For another variant of Bucklin’s rule, cf. RuleBucklinByRounds.

Parameters

• args – Cf. parent class.

• converter (ConverterBallot) – Default: ConverterBallotToOrder.

• scorer (Scorer) – Default: ScorerBorda with absent_give_points=True,
absent_receive_points=None, unordered_give_points=True,
unordered_receive_points=False.

• default_median (object) – The default median of a candidate when it receives no
score whatsoever.

• kwargs – Cf. parent class.

Examples

>>> rule = RuleBucklinInstant(ballots=['a > b > c', 'b > a > c', 'c > a > b'])
>>> rule.scores_
{'a': (1, 3), 'b': (1, 2), 'c': (0, 3)}
>>> rule.winner_
'a'
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With the default settings, and when preferences are strict total orders, RuleBucklinByRounds and
RuleBucklinInstant have the same winner (although not necessarily the same order over the candidates).
Otherwise, the winners may differ:

>>> profile = Profile(ballots=['a > b > c > d', 'b > a ~ d > c', 'c > a ~ d > b'],
... weights=[3, 3, 4])
>>> rule_bucklin_by_rounds = RuleBucklinByRounds(profile)
>>> rule_bucklin_by_rounds.detailed_scores_[0]
{'a': Fraction(3, 10), 'b': Fraction(3, 10), 'c': Fraction(2, 5), 'd': 0}
>>> rule_bucklin_by_rounds.detailed_scores_[1]
{'a': Fraction(13, 20), 'b': Fraction(3, 5), 'c': Fraction(2, 5), 'd': Fraction(7,
→˓ 20)}
>>> rule_bucklin_by_rounds.winner_
'a'
>>> rule_bucklin_instant = RuleBucklinInstant(profile)
>>> rule_bucklin_instant.scores_
{'a': (Fraction(3, 2), 10), 'b': (2, 6), 'c': (1, 7), 'd': (Fraction(3, 2), 7)}
>>> RuleBucklinInstant(profile).winner_
'b'

best_score_
The best score.

Type object

compare_scores(one: tuple, another: tuple)→ int
Compare two scores.

Parameters

• one (object) – A score.

• another (object) – A score.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

cotrailers_
“Cotrailers”. The set of candidates with the worst score.

Type NiceSet

cowinners_
Cowinners. The set of candidates with the best score.

Type NiceSet

n_candidates_
Number of candidates.

Type int

order_
Result of the election as a (weak) order over the candidates. It is a list of NiceSet. The first set contains
the candidates that have the best score, the second set contains those with the second best score, etc.

Type list

scores_as_floats_
Scores as floats. It is the same as scores_, but converted to floats.
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Examples

>>> rule = RuleBucklinInstant(ballots=['a > b > c', 'b > a > c', 'c > a > b'])
>>> rule.scores_as_floats_
{'a': (1.0, 3.0), 'b': (1.0, 2.0), 'c': (0.0, 3.0)}

Type NiceDict

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

worst_score_
The worst score.

Type object

5.8.7 RuleCondorcet

class whalrus.RuleCondorcet(*args, converter: whalrus.converters_ballot.converter_ballot.ConverterBallot
= None, matrix_majority: whalrus.matrices.matrix.Matrix = None,
**kwargs)

Condorcet Rule.

Parameters

• args – Cf. parent class.

• converter (ConverterBallot) – Default: ConverterBallotToOrder.

• matrix_majority (Matrix) – The majority matrix. Default: MatrixMajority .

• kwargs – Cf. parent class.

Examples

If there is a Condorcet winner, then it it the winner and all other candidates are tied. If there is no Condorcet
winner, then all candidates are tied.

>>> RuleCondorcet(ballots=['a > b > c', 'b > a > c', 'c > a > b']).order_
[{'a'}, {'b', 'c'}]
>>> RuleCondorcet(ballots=['a > b > c', 'b > c > a', 'c > a > b']).order_
[{'a', 'b', 'c'}]
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More precisely, and in all generality, a candidate is considered a Condorcet winner if all the non-diagonal coef-
ficients on its raw of matrix_majority_ are equal to 1. With the default setting of matrix_majority
= MatrixMajority(), the Condorcet winner is necessarily unique when it exists, but that might not be the
case with some more exotic settings:

>>> rule = RuleCondorcet(ballots=['a ~ b > c'], matrix_
→˓majority=MatrixMajority(equal=1))
>>> rule.matrix_majority_.as_array_
array([[Fraction(1, 2), 1, 1],

[1, Fraction(1, 2), 1],
[0, 0, Fraction(1, 2)]], dtype=object)

>>> rule.order_
[{'a', 'b'}, {'c'}]

cotrailers_
“Cotrailers” of the election, i.e. the candidates that fare worst in the election. This is the last equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the worst score.

Type NiceSet

cowinners_
Cowinners of the election, i.e. the candidates that fare best in the election.. This is the first equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the best score.

Type NiceSet

matrix_majority_
The majority matrix (once computed with the given profile).

Type Matrix

n_candidates_
Number of candidates.

Type int

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

5.8.8 RuleCoombs

class whalrus.RuleCoombs(*args, base_rule: whalrus.rules.rule.Rule = None, elimination: whal-
rus.eliminations.elimination.Elimination = None, **kwargs)

Coombs’ rule.

Parameters
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• args – Cf. parent class.

• base_rule (Rule) – Default: RuleVeto.

• elimination (Elimination) – Default: EliminationLast with k=1.

• kwargs – Cf. parent class.

Examples

At each round, the candidate with the worst Veto score is eliminated.

>>> rule = RuleCoombs(['a > b > c', 'b > a > c', 'c > a > b'], weights=[2, 3, 4])
>>> rule.eliminations_[0].rule_.gross_scores_
{'a': 0, 'b': -4, 'c': -5}
>>> rule.eliminations_[1].rule_.gross_scores_
{'a': -3, 'b': -6}
>>> rule.eliminations_[2].rule_.gross_scores_
{'a': -9}
>>> rule.winner_
'a'

cotrailers_
“Cotrailers” of the election, i.e. the candidates that fare worst in the election. This is the last equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the worst score.

Type NiceSet

cowinners_
Cowinners of the election, i.e. the candidates that fare best in the election.. This is the first equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the best score.

Type NiceSet

eliminations_
The elimination rounds. A list of Elimination objects. The first one corresponds to the first round, etc.

Type list

n_candidates_
Number of candidates.

Type int

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object
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5.8.9 RuleCopeland

class whalrus.RuleCopeland(*args, converter: whalrus.converters_ballot.converter_ballot.ConverterBallot
= None, matrix: whalrus.matrices.matrix.Matrix = None, **kwargs)

Copeland’s rule.

Parameters

• args – Cf. parent class.

• converter (ConverterBallot) – Default: ConverterBallotToOrder.

• matrix (Matrix) – Default: MatrixMajority .

• kwargs – Cf. parent class.

Examples

The score of a candidate is the number of victories in the majority matrix.

>>> rule = RuleCopeland(ballots=['a > b > c', 'b > a > c', 'c > a > b'])
>>> rule.matrix_.as_array_
array([[Fraction(1, 2), 1, 1],

[0, Fraction(1, 2), 1],
[0, 0, Fraction(1, 2)]], dtype=object)

>>> rule.scores_
{'a': 2, 'b': 1, 'c': 0}

average_score_
The average score.

Type Number

average_score_as_float_
The average score as a float. It is the same as average_score_, but converted to a float.

Type float

best_score_as_float_
The best score as a float. It is the same as RuleScore.best_score_, but converted to a float.

Type float

compare_scores(one: numbers.Number, another: numbers.Number)→ int
Compare two scores.

Parameters

• one (object) – A score.

• another (object) – A score.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

cotrailers_
“Cotrailers”. The set of candidates with the worst score.

Type NiceSet

cowinners_
Cowinners. The set of candidates with the best score.
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Type NiceSet

matrix_
The matrix (once computed with the given profile).

Type Matrix

matrix_majority_
The majority matrix. This is an alias for matrix_.

Examples

>>> rule = RuleCopeland(ballots=['a > b > c', 'b > a > c', 'c > a > b'])
>>> rule.matrix_majority_.as_array_
array([[Fraction(1, 2), 1, 1],

[0, Fraction(1, 2), 1],
[0, 0, Fraction(1, 2)]], dtype=object)

Type Matrix

n_candidates_
Number of candidates.

Type int

scores_as_floats_
Scores as floats. It is the same as scores_, but converted to floats.

Type NiceDict

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

worst_score_as_float_
The worst score as a float. It is the same as RuleScore.worst_score_, but converted to a float.

Type float

5.8.10 RuleIRV

class whalrus.RuleIRV(*args, base_rule: whalrus.rules.rule.Rule = None, elimination: whal-
rus.eliminations.elimination.Elimination = None, **kwargs)

Instant-Runoff Voting, also known as Alternative Vote, Single Transferable Vote, etc.

Parameters
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• args – Cf. parent class.

• base_rule (Rule) – Default: RulePlurality .

• elimination (Elimination) – Default: EliminationLast with k=1.

• kwargs – Cf. parent class.

Examples

At each round, the candidate with the worst Plurality score is eliminated.

>>> rule = RuleIRV(['a > b > c', 'b > a > c', 'c > a > b'], weights=[2, 3, 4])
>>> rule.eliminations_[0].rule_.gross_scores_
{'a': 2, 'b': 3, 'c': 4}
>>> rule.eliminations_[1].rule_.gross_scores_
{'b': 5, 'c': 4}
>>> rule.eliminations_[2].rule_.gross_scores_
{'b': 9}
>>> rule.winner_
'b'

An example using the tie-break:

>>> rule = RuleIRV(['a > c > b', 'b > a > c', 'c > a > b'], weights=[1, 2, 1],
... tie_break=Priority.ASCENDING)
>>> rule.eliminations_[0].rule_.gross_scores_
{'a': 1, 'b': 2, 'c': 1}
>>> rule.eliminations_[1].rule_.gross_scores_
{'a': 2, 'b': 2}
>>> rule.eliminations_[2].rule_.gross_scores_
{'a': 4}
>>> rule.winner_
'a'

cotrailers_
“Cotrailers” of the election, i.e. the candidates that fare worst in the election. This is the last equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the worst score.

Type NiceSet

cowinners_
Cowinners of the election, i.e. the candidates that fare best in the election.. This is the first equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the best score.

Type NiceSet

eliminations_
The elimination rounds. A list of Elimination objects. The first one corresponds to the first round, etc.

Type list

n_candidates_
Number of candidates.

Type int

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.
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Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

5.8.11 RuleKApproval

class whalrus.RuleKApproval(*args, k: int = 1, **kwargs)
K-Approval

The k top candidates in a ballot receive 1 point, and the other candidates receive 0 point.

Parameters

• args – Cf. parent class.

• k (int) – The number of approved candidates.

• kwargs – Cf. parent class.

Examples

>>> RuleKApproval(['a > b > c', 'b > c > a'], k=2).gross_scores_
{'a': 1, 'b': 2, 'c': 1}

average_score_
The average score.

Type Number

average_score_as_float_
The average score as a float. It is the same as average_score_, but converted to a float.

Type float

best_score_as_float_
The best score as a float. It is the same as RuleScore.best_score_, but converted to a float.

Type float

compare_scores(one: numbers.Number, another: numbers.Number)→ int
Compare two scores.

Parameters

• one (object) – A score.

• another (object) – A score.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int
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cotrailers_
“Cotrailers”. The set of candidates with the worst score.

Type NiceSet

cowinners_
Cowinners. The set of candidates with the best score.

Type NiceSet

gross_scores_
The gross scores of the candidates. For each candidate, this dictionary gives the sum of its scores, multi-
plied by the weights of the corresponding voters. This is the numerator in the candidate’s average score.

Type NiceDict

gross_scores_as_floats_
Gross scores as floats. It is the same as gross_scores_, but converted to floats.

Type NiceDict

n_candidates_
Number of candidates.

Type int

scores_as_floats_
Scores as floats. It is the same as scores_, but converted to floats.

Type NiceDict

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

weights_
The weights used for the candidates. For each candidate, this dictionary gives the total weight for this
candidate, i.e. the total weight of all voters who assign a score to this candidate. This is the denominator
in the candidate’s average score.

Type NiceDict

weights_as_floats_
Weights as floats. It is the same as weights_, but converted to floats.

Type NiceDict

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

worst_score_as_float_
The worst score as a float. It is the same as RuleScore.worst_score_, but converted to a float.

Type float
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5.8.12 RuleKimRoush

class whalrus.RuleKimRoush(*args, base_rule: whalrus.rules.rule.Rule = None, elimination: whal-
rus.eliminations.elimination.Elimination = None, **kwargs)

Kim-Roush rule.

At each round, all candidates whose Veto score is lower than the average Veto score are eliminated.

Parameters

• args – Cf. parent class.

• base_rule (Rule) – Default: RuleVeto.

• elimination (Elimination) – Default: EliminationBelowAverage.

• kwargs – Cf. parent class.

Examples

>>> rule = RuleKimRoush(['a > b > c > d', 'a > b > d > c'])
>>> rule.eliminations_[0].rule_.gross_scores_
{'a': 0, 'b': 0, 'c': -1, 'd': -1}
>>> rule.eliminations_[1].rule_.gross_scores_
{'a': 0, 'b': -2}
>>> rule.eliminations_[2].rule_.gross_scores_
{'a': -2}
>>> rule.winner_
'a'

cotrailers_
“Cotrailers” of the election, i.e. the candidates that fare worst in the election. This is the last equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the worst score.

Type NiceSet

cowinners_
Cowinners of the election, i.e. the candidates that fare best in the election.. This is the first equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the best score.

Type NiceSet

eliminations_
The elimination rounds. A list of Elimination objects. The first one corresponds to the first round, etc.

Type list

n_candidates_
Number of candidates.

Type int

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.
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Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

5.8.13 RuleMajorityJudgment

class whalrus.RuleMajorityJudgment(*args, converter: whal-
rus.converters_ballot.converter_ballot.ConverterBallot
= None, scorer: whalrus.scorers.scorer.Scorer = None,
scale: whalrus.scales.scale.Scale = None, default_median:
object = None, **kwargs)

Majority Judgment.

Parameters

• args – Cf. parent class.

• converter (ConverterBallot) – Default: ConverterBallotToLevels, with
scale=scorer.scale.

• scorer (Scorer) – Default: ScorerLevels. Alternatively, you may provide an argu-
ment scale. In that case, the scorer will be ScorerLevels(scale).

• default_median (object) – The median level that a candidate has when it receives
absolutely no evaluation whatsoever.

• kwargs – Cf. parent class.

Examples

>>> rule = RuleMajorityJudgment([{'a': 1, 'b': 1}, {'a': .5, 'b': .6},
... {'a': .5, 'b': .4}, {'a': .3, 'b': .2}])
>>> rule.scores_as_floats_
{'a': (0.5, -0.25, 0.25), 'b': (0.4, 0.5, -0.25)}
>>> rule.winner_
'a'

For each candidate, its median evaluation m is computed. When a candidate has two medians (like candidate b
in the above example, with .4 and .6), the lower value is considered. Let p (resp. q) denote the proportion of the
voters who evaluate the candidate better (resp. worse) than its median. The score of the candidate is the tuple
(m, p, -q) if p > q, and (m, -q, p) otherwise. Scores are compared lexicographically.

For Majority Judgment, verbal evaluation are generally used. The following example is actually the same as
above, but with verbal evaluations instead of grades:

>>> rule = RuleMajorityJudgment([
... {'a': 'Excellent', 'b': 'Excellent'}, {'a': 'Good', 'b': 'Very Good'},
... {'a': 'Good', 'b': 'Acceptable'}, {'a': 'Poor', 'b': 'To Reject'}
... ], scale=ScaleFromList(['To Reject', 'Poor', 'Acceptable', 'Good', 'Very Good
→˓', 'Excellent']))
>>> rule.scores_as_floats_
{'a': ('Good', -0.25, 0.25), 'b': ('Acceptable', 0.5, -0.25)}
>>> rule.winner_
'a'
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By changing the scorer, you may define a very different rule. The following one rewards the candidate with
best median Borda score (with secondary criteria that are similar to Majority Judgment, i.e. the proportions of
voters who give a candidate more / less than its median Borda score):

>>> from whalrus.scorers.scorer_borda import ScorerBorda
>>> from whalrus.converters_ballot.converter_ballot_to_order import
→˓ConverterBallotToOrder
>>> rule = RuleMajorityJudgment(scorer=ScorerBorda(),
→˓converter=ConverterBallotToOrder())
>>> rule(['a > b ~ c > d', 'c > a > b > d']).scores_as_floats_
{'a': (2.0, 0.5, 0.0), 'b': (1.0, 0.5, 0.0), 'c': (1.5, 0.5, 0.0), 'd': (0.0, 0.0,
→˓ 0.0)}
>>> rule.winner_
'a'

best_score_
The best score.

Type object

compare_scores(one: tuple, another: tuple)→ int
Compare two scores.

Parameters

• one (object) – A score.

• another (object) – A score.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

cotrailers_
“Cotrailers”. The set of candidates with the worst score.

Type NiceSet

cowinners_
Cowinners. The set of candidates with the best score.

Type NiceSet

n_candidates_
Number of candidates.

Type int

order_
Result of the election as a (weak) order over the candidates. It is a list of NiceSet. The first set contains
the candidates that have the best score, the second set contains those with the second best score, etc.

Type list

scores_
The scores. A NiceDict of triples.

Type NiceDict

scores_as_floats_
Scores as floats. It is the same as scores_, but converted to floats.

Type NiceDict
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strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

worst_score_
The worst score.

Type object

5.8.14 RuleMaximin

class whalrus.RuleMaximin(*args, converter: whalrus.converters_ballot.converter_ballot.ConverterBallot
= None, matrix_weighted_majority: whalrus.matrices.matrix.Matrix =
None, **kwargs)

Maximin rule. Also known as Simpson-Kramer rule.

The score of a candidate is the minimal non-diagonal coefficient on its raw of the matrix.

Parameters

• args – Cf. parent class.

• converter (ConverterBallot) – Default: ConverterBallotToOrder.

• matrix_weighted_majority (Matrix) – Default:
MatrixWeightedMajority .

• kwargs – Cf. parent class.

Examples

>>> rule = RuleMaximin(ballots=['a > b > c', 'b > c > a', 'c > a > b'],
→˓weights=[4, 3, 3])
>>> rule.matrix_weighted_majority_.as_array_of_floats_
array([[0. , 0.7, 0.4],

[0.3, 0. , 0.7],
[0.6, 0.3, 0. ]])

>>> rule.scores_as_floats_
{'a': 0.4, 'b': 0.3, 'c': 0.3}
>>> rule.winner_
'a'

average_score_
The average score.

Type Number
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average_score_as_float_
The average score as a float. It is the same as average_score_, but converted to a float.

Type float

best_score_as_float_
The best score as a float. It is the same as RuleScore.best_score_, but converted to a float.

Type float

compare_scores(one: numbers.Number, another: numbers.Number)→ int
Compare two scores.

Parameters

• one (object) – A score.

• another (object) – A score.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

cotrailers_
“Cotrailers”. The set of candidates with the worst score.

Type NiceSet

cowinners_
Cowinners. The set of candidates with the best score.

Type NiceSet

matrix_weighted_majority_
The weighted majority matrix (once computed with the given profile).

Type Matrix

n_candidates_
Number of candidates.

Type int

scores_as_floats_
Scores as floats. It is the same as scores_, but converted to floats.

Type NiceDict

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object
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worst_score_as_float_
The worst score as a float. It is the same as RuleScore.worst_score_, but converted to a float.

Type float

5.8.15 RuleNanson

class whalrus.RuleNanson(*args, base_rule: whalrus.rules.rule.Rule = None, elimination: whal-
rus.eliminations.elimination.Elimination = None, **kwargs)

Nanson’s rule.

At each round, all candidates whose Borda score is lower than the average Borda score are eliminated.

Parameters

• args – Cf. parent class.

• base_rule (Rule) – Default: RuleBorda.

• elimination (Elimination) – Default: EliminationBelowAverage.

• kwargs – Cf. parent class.

Examples

>>> rule = RuleNanson(['a > b > c > d', 'a > b > d > c'])
>>> rule.eliminations_[0].rule_.gross_scores_
{'a': 6, 'b': 4, 'c': 1, 'd': 1}
>>> rule.eliminations_[1].rule_.gross_scores_
{'a': 2, 'b': 0}
>>> rule.eliminations_[2].rule_.gross_scores_
{'a': 0}
>>> rule.winner_
'a'

cotrailers_
“Cotrailers” of the election, i.e. the candidates that fare worst in the election. This is the last equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the worst score.

Type NiceSet

cowinners_
Cowinners of the election, i.e. the candidates that fare best in the election.. This is the first equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the best score.

Type NiceSet

eliminations_
The elimination rounds. A list of Elimination objects. The first one corresponds to the first round, etc.

Type list

n_candidates_
Number of candidates.

Type int

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.
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Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

5.8.16 RulePlurality

class whalrus.RulePlurality(*args, converter: whalrus.converters_ballot.converter_ballot.ConverterBallot
= None, scorer: whalrus.scorers.scorer.Scorer = None, **kwargs)

The plurality rule.

Parameters

• args – Cf. parent class.

• converter (ConverterBallot) – Default: ConverterBallotToPlurality .

• scorer (Scorer) – Default: ScorerPlurality .

• kwargs – Cf. parent class.

Examples

In the most general syntax, firstly, you define the rule:

>>> plurality = RulePlurality(tie_break=Priority.ASCENDING)

Secondly, you use it as a callable to load a particular election (profile, candidates):

>>> plurality(ballots=['a', 'b', 'c'], weights=[2, 2, 1], voters=['Alice', 'Bob',
→˓'Cate'],
... candidates={'a', 'b', 'c', 'd'}) # doctest:+ELLIPSIS
<... object at ...>

Finally, you can access the computed variables:

>>> plurality.gross_scores_
{'a': 2, 'b': 2, 'c': 1, 'd': 0}
>>> plurality.winner_
'a'

Later, if you wish, you can load another profile with the same voting rule, and so on.

Optionally, you can specify an election (profile and candidates) as soon as the Rule object is initialized. This
allows for one-liners such as:

>>> RulePlurality(['a', 'a', 'b', 'c']).winner_
'a'

Cf. Rule for more information about the arguments.

5.8. Rule: In Particular 101



Whalrus Documentation, Release 0.4.6

average_score_
The average score.

Type Number

average_score_as_float_
The average score as a float. It is the same as average_score_, but converted to a float.

Type float

best_score_as_float_
The best score as a float. It is the same as RuleScore.best_score_, but converted to a float.

Type float

compare_scores(one: numbers.Number, another: numbers.Number)→ int
Compare two scores.

Parameters

• one (object) – A score.

• another (object) – A score.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

cotrailers_
“Cotrailers”. The set of candidates with the worst score.

Type NiceSet

cowinners_
Cowinners. The set of candidates with the best score.

Type NiceSet

gross_scores_as_floats_
Gross scores as floats. It is the same as gross_scores_, but converted to floats.

Type NiceDict

n_candidates_
Number of candidates.

Type int

scores_as_floats_
Scores as floats. It is the same as scores_, but converted to floats.

Type NiceDict

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object
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weights_as_floats_
Weights as floats. It is the same as weights_, but converted to floats.

Type NiceDict

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

worst_score_as_float_
The worst score as a float. It is the same as RuleScore.worst_score_, but converted to a float.

Type float

5.8.17 RuleRangeVoting

class whalrus.RuleRangeVoting(*args, converter: whalrus.converters_ballot.converter_ballot.ConverterBallot
= None, scorer: whalrus.scorers.scorer.Scorer = None,
**kwargs)

Range voting.

Parameters

• args – Cf. parent class.

• converter (ConverterBallot) – Default: ConverterBallotToGrades.

• scorer (Scorer) – Default: ScorerLevels.

• kwargs – Cf. parent class.

Examples

Typical usage:

>>> RuleRangeVoting([{'a': 1, 'b': .8, 'c': .2}, {'a': 0, 'b': .6, 'c': 1}]).
→˓scores_
{'a': Fraction(1, 2), 'b': Fraction(7, 10), 'c': Fraction(3, 5)}
>>> RuleRangeVoting([{'a': 10, 'b': 8, 'c': 2}, {'a': 0, 'b': 6, 'c': 10}]).
→˓scores_
{'a': 5, 'b': 7, 'c': 6}

The following examples use the ballot converter:

>>> RuleRangeVoting(['a > b > c']).profile_converted_[0].as_dict
{'a': 1, 'b': Fraction(1, 2), 'c': 0}
>>> RuleRangeVoting(
... ['a > b > c'], converter=ConverterBallotToGrades(scale=ScaleRange(0, 10))
... ).profile_converted_[0].as_dict
{'a': 10, 'b': 5, 'c': 0}

To examine the effect of the options, let us examine:

>>> b1 = BallotLevels({'a': 8, 'b': 10}, candidates={'a', 'b'})
>>> b2 = BallotLevels({'a': 6, 'c': 10}, candidates={'a', 'b', 'c'})
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In ballot b1, candidate c is absent, which means that the candidate was not even available when the voter cast
her ballot. In ballot b2, candidate b is ungraded: it was available, but the voter decided not to give it a grade.
By the way, we will also introduce a candidate d who receives no evaluation at all. Here are several possible
settings for the voting rule, along with their consequences:

>>> RuleRangeVoting([b1, b2], candidates={'a', 'b', 'c', 'd'}).scores_
{'a': 7, 'b': 10, 'c': 10, 'd': 0}
>>> RuleRangeVoting([b1, b2], candidates={'a', 'b', 'c', 'd'}, default_average=5).
→˓scores_
{'a': 7, 'b': 10, 'c': 10, 'd': 5}
>>> RuleRangeVoting([b1, b2], candidates={'a', 'b', 'c', 'd'},
... scorer=ScorerLevels(level_ungraded=0)).scores_
{'a': 7, 'b': 5, 'c': 10, 'd': 0}
>>> RuleRangeVoting([b1, b2], candidates={'a', 'b', 'c', 'd'},
... scorer=ScorerLevels(level_ungraded=0, level_absent=0)).scores_
{'a': 7, 'b': 5, 'c': 5, 'd': 0}

For more information, cf. ScorerLevels.

average_score_
The average score.

Type Number

average_score_as_float_
The average score as a float. It is the same as average_score_, but converted to a float.

Type float

best_score_as_float_
The best score as a float. It is the same as RuleScore.best_score_, but converted to a float.

Type float

compare_scores(one: numbers.Number, another: numbers.Number)→ int
Compare two scores.

Parameters

• one (object) – A score.

• another (object) – A score.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

cotrailers_
“Cotrailers”. The set of candidates with the worst score.

Type NiceSet

cowinners_
Cowinners. The set of candidates with the best score.

Type NiceSet

gross_scores_
The gross scores of the candidates. For each candidate, this dictionary gives the sum of its scores, multi-
plied by the weights of the corresponding voters. This is the numerator in the candidate’s average score.

Type NiceDict
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gross_scores_as_floats_
Gross scores as floats. It is the same as gross_scores_, but converted to floats.

Type NiceDict

n_candidates_
Number of candidates.

Type int

scores_as_floats_
Scores as floats. It is the same as scores_, but converted to floats.

Type NiceDict

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

weights_
The weights used for the candidates. For each candidate, this dictionary gives the total weight for this
candidate, i.e. the total weight of all voters who assign a score to this candidate. This is the denominator
in the candidate’s average score.

Type NiceDict

weights_as_floats_
Weights as floats. It is the same as weights_, but converted to floats.

Type NiceDict

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

worst_score_as_float_
The worst score as a float. It is the same as RuleScore.worst_score_, but converted to a float.

Type float

5.8.18 RuleRankedPairs

class whalrus.RuleRankedPairs(*args, converter: whalrus.converters_ballot.converter_ballot.ConverterBallot
= None, matrix: whalrus.matrices.matrix.Matrix = None,
**kwargs)

Ranked Pairs rule.

The score of a candidate is the number of victories in the ranked pairs matrix.

Parameters

• args – Cf. parent class.

• converter (ConverterBallot) – Default: ConverterBallotToOrder.
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• matrix (Matrix) – Default: MatrixRankedPairs(tie_break=tie_break).

• kwargs – Cf. parent class.

Examples

>>> rule = RuleRankedPairs(['a > b > c', 'b > c > a', 'c > a > b'], weights=[4, 3,
→˓ 2])
>>> rule.matrix_.as_array_
array([[0, 1, 1],

[0, 0, 1],
[0, 0, 0]], dtype=object)

>>> rule.scores_
{'a': 2, 'b': 1, 'c': 0}

average_score_
The average score.

Type Number

average_score_as_float_
The average score as a float. It is the same as average_score_, but converted to a float.

Type float

best_score_as_float_
The best score as a float. It is the same as RuleScore.best_score_, but converted to a float.

Type float

compare_scores(one: numbers.Number, another: numbers.Number)→ int
Compare two scores.

Parameters

• one (object) – A score.

• another (object) – A score.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

cotrailers_
“Cotrailers”. The set of candidates with the worst score.

Type NiceSet

cowinners_
Cowinners. The set of candidates with the best score.

Type NiceSet

matrix_
The matrix (once computed with the given profile).

Type Matrix

matrix_ranked_pairs_
The ranked pairs matrix. Alias for matrix_.
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Examples

>>> rule = RuleRankedPairs(['a > b > c', 'b > c > a', 'c > a > b'],
→˓weights=[4, 3, 2])
>>> rule.matrix_ranked_pairs_.as_array_
array([[0, 1, 1],

[0, 0, 1],
[0, 0, 0]], dtype=object)

Type Matrix

n_candidates_
Number of candidates.

Type int

scores_as_floats_
Scores as floats. It is the same as scores_, but converted to floats.

Type NiceDict

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

worst_score_as_float_
The worst score as a float. It is the same as RuleScore.worst_score_, but converted to a float.

Type float

5.8.19 RuleSchulze

class whalrus.RuleSchulze(*args, converter: whalrus.converters_ballot.converter_ballot.ConverterBallot
= None, matrix_schulze: whalrus.matrices.matrix.Matrix = None,
**kwargs)

Schulze’s Rule.

A candidate is a Schulze winner if it has no defeat in the Schulze matrix.

Parameters

• args – Cf. parent class.

• converter (ConverterBallot) – Default: ConverterBallotToOrder.

• matrix_schulze (Matrix) – The Schulze matrix. Default: MatrixSchulze.
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• kwargs – Cf. parent class.

Examples

>>> rule = RuleSchulze(['a > b > c', 'b > c > a', 'c > a > b'], weights=[4, 3, 2])
>>> rule.matrix_schulze_.as_array_
array([[0, Fraction(2, 3), Fraction(2, 3)],

[Fraction(5, 9), 0, Fraction(7, 9)],
[Fraction(5, 9), Fraction(5, 9), 0]], dtype=object)

>>> rule.winner_
'a'

cotrailers_
“Cotrailers” of the election, i.e. the candidates that fare worst in the election. This is the last equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the worst score.

Type NiceSet

cowinners_
Cowinners of the election, i.e. the candidates that fare best in the election.. This is the first equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the best score.

Type NiceSet

matrix_schulze_
The Schulze matrix (once computed with the given profile).

Type Matrix

n_candidates_
Number of candidates.

Type int

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

5.8.20 RuleSimplifiedDodgson

class whalrus.RuleSimplifiedDodgson(*args, converter: whal-
rus.converters_ballot.converter_ballot.ConverterBallot
= None, matrix_weighted_majority: whal-
rus.matrices.matrix.Matrix = None, **kwargs)

Simplified Dodgson rule.
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The score of a candidate is the sum of the negative non-diagonal coefficient on its raw of
matrix_weighted_majority_.

Parameters

• args – Cf. parent class.

• converter (ConverterBallot) – Default: ConverterBallotToOrder.

• matrix_weighted_majority (Matrix) – Default:
MatrixWeightedMajority with antisymmetric=True.

• kwargs – Cf. parent class.

Examples

>>> rule = RuleSimplifiedDodgson(ballots=['a > b > c', 'b > a > c', 'c > a > b'],
... weights=[3, 3, 2])
>>> rule.matrix_weighted_majority_.as_array_
array([[0, Fraction(1, 4), Fraction(1, 2)],

[Fraction(-1, 4), 0, Fraction(1, 2)],
[Fraction(-1, 2), Fraction(-1, 2), 0]], dtype=object)

>>> rule.scores_
{'a': 0, 'b': Fraction(-1, 4), 'c': -1}
>>> rule.winner_
'a'

average_score_
The average score.

Type Number

average_score_as_float_
The average score as a float. It is the same as average_score_, but converted to a float.

Type float

best_score_as_float_
The best score as a float. It is the same as RuleScore.best_score_, but converted to a float.

Type float

compare_scores(one: numbers.Number, another: numbers.Number)→ int
Compare two scores.

Parameters

• one (object) – A score.

• another (object) – A score.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

cotrailers_
“Cotrailers”. The set of candidates with the worst score.

Type NiceSet

cowinners_
Cowinners. The set of candidates with the best score.
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Type NiceSet

matrix_weighted_majority_
The weighted majority matrix (once computed with the given profile).

Type Matrix

n_candidates_
Number of candidates.

Type int

scores_as_floats_
Scores as floats. It is the same as scores_, but converted to floats.

Type NiceDict

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

worst_score_as_float_
The worst score as a float. It is the same as RuleScore.worst_score_, but converted to a float.

Type float

5.8.21 RuleTwoRound

class whalrus.RuleTwoRound(*args, rule1: whalrus.rules.rule.Rule = None, rule2:
whalrus.rules.rule.Rule = None, elimination: whal-
rus.eliminations.elimination.Elimination = None, **kwargs)

The two-round system.

Parameters

• args – Cf. parent class.

• rule1 – The first rule. Default: RulePlurality .

• rule2 – The second rule. Default: RulePlurality .

• elimination (Elimination) – The elimination algorithm used during the first round.
Default: EliminationLast with k=-2, which only keeps the 2 best candidates.

• kwargs – Cf. parent class.
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Examples

With its default settings, this class implements the classic two-round system, using plurality at both rounds:

>>> rule = RuleTwoRound(['a > b > c > d > e', 'b > a > c > d > e', 'c > a > b > d
→˓> e'],
... weights=[2, 2, 1])
>>> rule.first_round_.rule_.gross_scores_
{'a': 2, 'b': 2, 'c': 1, 'd': 0, 'e': 0}
>>> rule.second_round_.gross_scores_
{'a': 3, 'b': 2}

Using the options, some more exotic two-round systems can be defined, such as changing the rule of a round:

>>> rule = RuleTwoRound(['a > b > c > d > e', 'b > a > c > d > e', 'c > a > b > d
→˓> e'],
... weights=[2, 2, 1], rule1=RuleBorda())
>>> rule.first_round_.rule_.gross_scores_
{'a': 17, 'b': 16, 'c': 12, 'd': 5, 'e': 0}
>>> rule.second_round_.gross_scores_
{'a': 3, 'b': 2}

. . . or changing the elimination algorithm:

>>> rule = RuleTwoRound(['a > b > c > d > e', 'b > a > c > d > e', 'c > a > b > d
→˓> e'],
... weights=[2, 2, 1], elimination=EliminationLast(k=-3))
>>> rule.first_round_.rule_.gross_scores_
{'a': 2, 'b': 2, 'c': 1, 'd': 0, 'e': 0}
>>> rule.second_round_.gross_scores_
{'a': 2, 'b': 2, 'c': 1}

cotrailers_
“Cotrailers” of the election, i.e. the candidates that fare worst in the election. This is the last equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the worst score.

Type NiceSet

cowinners_
Cowinners of the election, i.e. the candidates that fare best in the election.. This is the first equivalence
class in order_. For example, in RuleScoreNum, it is the candidates that are tied for the best score.

Type NiceSet

elimination_rounds_
The elimination rounds. A list of Elimination objects. All rounds except the last one.

Type list

final_round_
The final round, which decides the winner of the election.

Type Rule

first_round_
The first round. This is just a shortcut for self.elimination_rounds_[0].

Type Elimination

n_candidates_
Number of candidates.
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Type int

rounds_
The rounds. All rounds but the last one are Elimination objects. The last one is a Rule object.

Examples

Note that in some cases, there may be fewer actual rounds than declared in the definition of the rule:

>>> rule = RuleSequentialElimination(
... ['a > b > c > d', 'a > c > d > b', 'a > d > b > c'],
... rules=[RuleBorda(), RulePlurality(), RulePlurality()],
... eliminations=[EliminationBelowAverage(), EliminationLast(k=1)])
>>> len(rule.rounds_)
2
>>> rule.elimination_rounds_[0].rule_.gross_scores_
{'a': 9, 'b': 3, 'c': 3, 'd': 3}
>>> rule.final_round_.gross_scores_
{'a': 3}

Type list

second_round_
The second round. This is just an alternative name for self.final_round_.

Type Rule

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list

trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

5.8.22 RuleVeto

class whalrus.RuleVeto(*args, converter: whalrus.converters_ballot.converter_ballot.ConverterBallot
= None, scorer: whalrus.scorers.scorer.Scorer = None, **kwargs)

The veto rule.

Parameters

• args – Cf. parent class.

• converter (ConverterBallot) – Default: ConverterBallotToVeto.

• scorer (Scorer) – Default: ScorerVeto.

• kwargs – Cf. parent class.
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Examples

>>> RuleVeto(['a', 'b', 'b', 'c', 'c']).winner_
'a'

average_score_
The average score.

Type Number

average_score_as_float_
The average score as a float. It is the same as average_score_, but converted to a float.

Type float

best_score_as_float_
The best score as a float. It is the same as RuleScore.best_score_, but converted to a float.

Type float

compare_scores(one: numbers.Number, another: numbers.Number)→ int
Compare two scores.

Parameters

• one (object) – A score.

• another (object) – A score.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

cotrailers_
“Cotrailers”. The set of candidates with the worst score.

Type NiceSet

cowinners_
Cowinners. The set of candidates with the best score.

Type NiceSet

gross_scores_as_floats_
Gross scores as floats. It is the same as gross_scores_, but converted to floats.

Type NiceDict

n_candidates_
Number of candidates.

Type int

scores_as_floats_
Scores as floats. It is the same as scores_, but converted to floats.

Type NiceDict

strict_order_
Result of the election as a strict order over the candidates. The first element is the winner, etc. This may
use the tie-breaking rule.

Type list
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trailer_
The “trailer” of the election. This is the last candidate in strict_order_ and also the unfavorable
choice of the tie-breaking rule in cotrailers_.

Type object

weights_as_floats_
Weights as floats. It is the same as weights_, but converted to floats.

Type NiceDict

winner_
The winner of the election. This is the first candidate in strict_order_ and also the choice of the
tie-breaking rule in cowinners_.

Type object

worst_score_as_float_
The worst score as a float. It is the same as RuleScore.worst_score_, but converted to a float.

Type float

5.9 Scale

5.9.1 Scale

class whalrus.Scale
A scale used to evaluate the candidates (for RuleRangeVoting, RuleMajorityJudgment, etc).

This parent class represents a generic scale, where two levels of the scale compare according to their internal
methods __lt__, __le__, etc.

For a subclass, it is sufficient to override the method lt() and the other comparison methods will be modified
accordingly (assuming it describes a total order).

Examples

>>> scale = Scale()
>>> scale.lt(1, 7)
True

argsort(some_list: list, reverse: bool = False)→ list
“Argsort” a list of levels.

Parameters

• some_list (list) – A list of levels.

• reverse (bool) – If True, then argsort in decreasing order.

Returns A list of indexes.

Return type list
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Examples

>>> Scale().argsort(['a', 'c', 'b'])
[0, 2, 1]

compare(one: object, another: object)→ int
Compare two levels.

Parameters

• one (object) – A level.

• another (object) – A level.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

Examples

>>> Scale().compare('a', 'z')
-1

eq(one: object, another: object)→ bool
Test “equal”. Cf. lt().

ge(one: object, another: object)→ bool
Test “greater or equal”. Cf. lt().

gt(one: object, another: object)→ bool
Test “greater than”. Cf. lt().

high
The highest element of the scale (or None if the scale is unbounded above).

Type object

le(one: object, another: object)→ bool
Test “lower or equal”. Cf. lt().

low
The lowest element of the scale (or None if the scale is unbounded below).

Type object

lt(one: object, another: object)→ bool
Test “lower than”.

Generally, only this method is overridden in the subclasses.

Parameters

• one (object) – A level of the scale.

• another (object) – A level of the scale.

Returns True iff one is lower than another.

Return type bool

5.9. Scale 115



Whalrus Documentation, Release 0.4.6

Examples

>>> Scale().lt('a', 'z')
True

max(iterable: Iterable[T_co])→ object
Maximum of some levels.

Parameters iterable (Iterable) – An iterable of levels (list, set, etc).

Examples

>>> Scale().max({4, 1, 12})
12

min(iterable: Iterable[T_co])→ object
Minimum of some levels.

Parameters iterable (Iterable) – An iterable of levels (list, set, etc).

Examples

>>> Scale().min({'x', 'a', 'z'})
'a'

ne(one: object, another: object)→ bool
Test “not equal”. Cf. lt().

sort(some_list: list, reverse: bool = False)→ None
Sort a list of levels (in place).

Parameters

• some_list (list) – A list of levels.

• reverse (bool) – If True, then sort in decreasing order.

Examples

>>> some_list = [42, 3, 12]
>>> Scale().sort(some_list)
>>> some_list
[3, 12, 42]

5.9.2 ScaleFromList

class whalrus.ScaleFromList(levels: list)
Scale derived from a list.

Parameters levels (list) – The list of levels, from the worst to the best.

argsort(some_list: list, reverse: bool = False)→ list
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Examples

>>> scale = ScaleFromList(['Bad', 'Medium', 'Good', 'Very good', 'Excellent'])
>>> scale.argsort(['Good', 'Bad', 'Excellent'])
[1, 0, 2]

compare(one: object, another: object)→ int
Compare two levels.

Parameters

• one (object) – A level.

• another (object) – A level.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

Examples

>>> Scale().compare('a', 'z')
-1

eq(one: object, another: object)→ bool
Test “equal”. Cf. lt().

ge(one: object, another: object)→ bool
Test “greater or equal”. Cf. lt().

gt(one: object, another: object)→ bool
Test “greater than”. Cf. lt().

high

>>> scale = ScaleFromList(['Bad', 'Medium', 'Good', 'Very good', 'Excellent'])
>>> scale.high
'Excellent'

le(one: object, another: object)→ bool
Test “lower or equal”. Cf. lt().

low

>>> scale = ScaleFromList(['Bad', 'Medium', 'Good', 'Very good', 'Excellent'])
>>> scale.low
'Bad'

lt(one: object, another: object)→ bool

>>> scale = ScaleFromList(['Bad', 'Medium', 'Good', 'Very good', 'Excellent'])
>>> scale.lt('Medium', 'Excellent')
True

max(iterable: Iterable[T_co])→ object
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Examples

>>> scale = ScaleFromList(['Bad', 'Medium', 'Good', 'Very good', 'Excellent'])
>>> scale.max(['Good', 'Bad', 'Excellent'])
'Excellent'

min(iterable: Iterable[T_co])→ object

Examples

>>> scale = ScaleFromList(['Bad', 'Medium', 'Good', 'Very good', 'Excellent'])
>>> scale.min(['Good', 'Bad', 'Excellent'])
'Bad'

ne(one: object, another: object)→ bool
Test “not equal”. Cf. lt().

sort(some_list: list, reverse: bool = False)→ None

Examples

>>> scale = ScaleFromList(['Bad', 'Medium', 'Good', 'Very good', 'Excellent'])
>>> some_list = ['Good', 'Bad', 'Excellent']
>>> scale.sort(some_list)
>>> some_list
['Bad', 'Good', 'Excellent']

5.9.3 ScaleFromSet

class whalrus.ScaleFromSet(levels: set)
Scale derived from a set.

Parameters levels (set) – A set of comparable objects. It is recommended that they are also
hashable.

Examples

Typical usage:

>>> scale = ScaleFromSet({-1, 0, 2})

A more complex example:

>>> class Appreciation:
... VALUES = {'Excellent': 2, 'Good': 1, 'Medium': 0}
... def __init__(self, x):
... self.x = x
... def __repr__(self):
... return 'Appreciation(%r)' % self.x
... def __hash__(self):
... return hash(self.x)
... def __lt__(self, other):

(continues on next page)
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(continued from previous page)

... return Appreciation.VALUES[self.x] < Appreciation.VALUES[other.x]
>>> scale = ScaleFromSet({Appreciation('Excellent'), Appreciation('Good'),
... Appreciation('Medium')})
>>> scale.lt(Appreciation('Medium'), Appreciation('Good'))
True
>>> scale.low
Appreciation('Medium')
>>> scale.high
Appreciation('Excellent')

argsort(some_list: list, reverse: bool = False)→ list

Examples

>>> scale = ScaleFromList(['Bad', 'Medium', 'Good', 'Very good', 'Excellent'])
>>> scale.argsort(['Good', 'Bad', 'Excellent'])
[1, 0, 2]

compare(one: object, another: object)→ int
Compare two levels.

Parameters

• one (object) – A level.

• another (object) – A level.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

Examples

>>> Scale().compare('a', 'z')
-1

eq(one: object, another: object)→ bool
Test “equal”. Cf. lt().

ge(one: object, another: object)→ bool
Test “greater or equal”. Cf. lt().

gt(one: object, another: object)→ bool
Test “greater than”. Cf. lt().

high

>>> scale = ScaleFromList(['Bad', 'Medium', 'Good', 'Very good', 'Excellent'])
>>> scale.high
'Excellent'

le(one: object, another: object)→ bool
Test “lower or equal”. Cf. lt().
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low

>>> scale = ScaleFromList(['Bad', 'Medium', 'Good', 'Very good', 'Excellent'])
>>> scale.low
'Bad'

lt(one: object, another: object)→ bool

Examples

>>> scale = ScaleFromSet({-1, 0, 2})
>>> scale.lt(0, 2)
True

max(iterable: Iterable[T_co])→ object

Examples

>>> scale = ScaleFromList(['Bad', 'Medium', 'Good', 'Very good', 'Excellent'])
>>> scale.max(['Good', 'Bad', 'Excellent'])
'Excellent'

min(iterable: Iterable[T_co])→ object

Examples

>>> scale = ScaleFromList(['Bad', 'Medium', 'Good', 'Very good', 'Excellent'])
>>> scale.min(['Good', 'Bad', 'Excellent'])
'Bad'

ne(one: object, another: object)→ bool
Test “not equal”. Cf. lt().

sort(some_list: list, reverse: bool = False)→ None

Examples

>>> scale = ScaleFromList(['Bad', 'Medium', 'Good', 'Very good', 'Excellent'])
>>> some_list = ['Good', 'Bad', 'Excellent']
>>> scale.sort(some_list)
>>> some_list
['Bad', 'Good', 'Excellent']

5.9.4 ScaleInterval

class whalrus.ScaleInterval(low: numbers.Number = 0, high: numbers.Number = 1)
A scale given by a continuous interval of numbers.

Parameters

• low (Number) – Lowest grade.
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• high (Number) – Highest grade.

Examples

>>> ScaleInterval(low=0, high=2.5)
ScaleInterval(low=0, high=Fraction(5, 2))

argsort(some_list: list, reverse: bool = False)→ list

Examples

>>> ScaleInterval(low=0, high=1).argsort([.3, .1, .7])
[1, 0, 2]

compare(one: object, another: object)→ int
Compare two levels.

Parameters

• one (object) – A level.

• another (object) – A level.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

Examples

>>> Scale().compare('a', 'z')
-1

eq(one: object, another: object)→ bool
Test “equal”. Cf. lt().

ge(one: object, another: object)→ bool
Test “greater or equal”. Cf. lt().

gt(one: object, another: object)→ bool
Test “greater than”. Cf. lt().

high

Examples

>>> ScaleInterval(low=0, high=1).high
1

le(one: object, another: object)→ bool
Test “lower or equal”. Cf. lt().

low
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Examples

>>> ScaleInterval(low=0, high=1).low
0

lt(one: object, another: object)→ bool
Test “lower than”.

Generally, only this method is overridden in the subclasses.

Parameters

• one (object) – A level of the scale.

• another (object) – A level of the scale.

Returns True iff one is lower than another.

Return type bool

Examples

>>> Scale().lt('a', 'z')
True

max(iterable: Iterable[T_co])→ object

Examples

>>> ScaleInterval(low=0, high=1).max([.3, .1, .7])
0.7

min(iterable: Iterable[T_co])→ object

Examples

>>> ScaleInterval(low=0, high=1).min([.3, .1, .7])
0.1

ne(one: object, another: object)→ bool
Test “not equal”. Cf. lt().

sort(some_list: list, reverse: bool = False)→ None

Examples

>>> some_list = [.3, .1, .7]
>>> ScaleInterval(low=0, high=1).sort(some_list)
>>> some_list
[0.1, 0.3, 0.7]
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5.9.5 ScaleRange

class whalrus.ScaleRange(low: int, high: int)
A scale of consecutive integers.

Remark: for a scale of non-consecutive integers, such as {-1, 0, 2}, use the ScaleFromSet.

Parameters

• low (int) – Lowest integer.

• high (int) – Highest integer.

Examples

>>> scale = ScaleRange(low=0, high=5)

argsort(some_list: list, reverse: bool = False)→ list

Examples

>>> ScaleRange(low=0, high=5).argsort([3, 1, 4])
[1, 0, 2]

compare(one: object, another: object)→ int
Compare two levels.

Parameters

• one (object) – A level.

• another (object) – A level.

Returns 0 if they are equal, a positive number if one is greater than another, a negative
number otherwise.

Return type int

Examples

>>> Scale().compare('a', 'z')
-1

eq(one: object, another: object)→ bool
Test “equal”. Cf. lt().

ge(one: object, another: object)→ bool
Test “greater or equal”. Cf. lt().

gt(one: object, another: object)→ bool
Test “greater than”. Cf. lt().

high
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Examples

>>> ScaleRange(low=0, high=5).high
5

le(one: object, another: object)→ bool
Test “lower or equal”. Cf. lt().

low

Examples

>>> ScaleRange(low=0, high=5).low
0

lt(one: object, another: object)→ bool
Test “lower than”.

Generally, only this method is overridden in the subclasses.

Parameters

• one (object) – A level of the scale.

• another (object) – A level of the scale.

Returns True iff one is lower than another.

Return type bool

Examples

>>> Scale().lt('a', 'z')
True

max(iterable: Iterable[T_co])→ object

Examples

>>> ScaleRange(low=0, high=5).max([3, 1, 4])
4

min(iterable: Iterable[T_co])→ object

Examples

>>> ScaleRange(low=0, high=5).min([3, 1, 4])
1

ne(one: object, another: object)→ bool
Test “not equal”. Cf. lt().

sort(some_list: list, reverse: bool = False)→ None
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Examples

>>> some_list = [3, 1, 4]
>>> ScaleRange(low=0, high=5).sort(some_list)
>>> some_list
[1, 3, 4]

5.10 Scorer

5.10.1 Scorer

class whalrus.Scorer(*args, scale: whalrus.scales.scale.Scale = None, **kwargs)
A “scorer”.

A Scorer is a callable whose inputs are a ballot, a voter and a set of candidates (the set of candidates of the
election). When the scorer is called, it loads its arguments. The output of the call is the scorer itself. But after
the call, you can access to the computed variables (ending with an underscore), such as scores_.

At the initialization of a Scorer object, some options can be given, such as a scale. In some subclasses, there
can be some additional options.

Parameters

• args – If present, these parameters will be passed to __call__ immediately after initial-
ization.

• scale (Scale) – The scale in which scores are computed.

• kwargs – If present, these parameters will be passed to __call__ immediately after
initialization.

ballot_
This attribute stores the ballot given in argument of the __call__.

Type Ballot

voter_
This attribute stores the voter given in argument of the __call__.

Type object

candidates_
This attribute stores the candidates given in argument of the __call__.

Type NiceSet

Examples

Cf. ScorerLevels for some examples.

scores_
The scores. To each candidate, this dictionary associates either a level in the scale or None. For the
meaning of None, cf. RuleRangeVoting for example. Intuitively: a score of 0 means that the value
0 is counted in the average, whereas None is not counted at all (i.e. the weight of the voter is not even
counted in the denominator when computing the average).

Type NiceDict
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scores_as_floats_
The scores, given as floats. It is the same as scores_, but converted to floats.

Like all conversions to floats, it is advised to use this attribute for display purposes only. For computation,
you should always use scores_, which usually manipulates fractions and therefore allows for exact
computation.

Raises ValueError – If the scores cannot be converted to floats.

Type NiceDict

5.10.2 ScorerBorda

class whalrus.ScorerBorda(*args, absent_give_points: bool = True, absent_receive_points: Op-
tional[bool] = True, unordered_give_points: bool = True, un-
ordered_receive_points: Optional[bool] = True, **kwargs)

A Borda scorer for BallotOrder.

Parameters

• args – Cf. parent class.

• absent_give_points (bool) – Whether absent candidates give points to the other
candidates.

• absent_receive_points (bool or None) – Whether absent candidates receives
points. Remark: 0 means that any absent candidate receives the score 0 (which will be
counted in its average Borda score, median Borda score, etc); in contrast, None means that
the absent candidate receives no score (hence this voter will be excluded from the computa-
tion of its average Borda score, median Borda score, etc).

• unordered_give_points (bool) – Whether unordered candidates give points to the
ordered candidates, i.e. they are considered as being in a lower position in the ranking.

• unordered_receive_points (bool or None) – Whether unordered candidates
receive points. Like for absent_receive_points, None means that an unordered
candidate receives no score at all.

• kwargs – Cf. parent class.

Examples

Typical usage:

>>> ScorerBorda(ballot=BallotOrder('a > b > c'), voter='Alice',
... candidates={'a', 'b', 'c'}).scores_
{'a': 2, 'b': 1, 'c': 0}

In the example below, candidates a, b and c are “ordered”, d and e are “unordered”, and f and g are “absent”
in the ballot, meaning that these candidates were not even available when the voter cast her ballot. The options
allows for different ways to take these special cases into account:

>>> ballot = BallotOrder('a > b ~ c', candidates={'a', 'b', 'c', 'd', 'e'})
>>> candidates_election = {'a', 'b', 'c', 'd', 'e', 'f', 'g'}
>>> ScorerBorda(ballot, candidates=candidates_election).scores_as_floats_
{'a': 6.0, 'b': 4.5, 'c': 4.5, 'd': 2.5, 'e': 2.5, 'f': 0.5, 'g': 0.5}
>>> ScorerBorda(ballot, candidates=candidates_election,
... absent_receive_points=False).scores_as_floats_

(continues on next page)
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(continued from previous page)

{'a': 6.0, 'b': 4.5, 'c': 4.5, 'd': 2.5, 'e': 2.5, 'f': 0.0, 'g': 0.0}
>>> ScorerBorda(ballot, candidates=candidates_election,
... absent_receive_points=False, absent_give_points=False).scores_as_
→˓floats_
{'a': 4.0, 'b': 2.5, 'c': 2.5, 'd': 0.5, 'e': 0.5, 'f': 0.0, 'g': 0.0}
>>> ScorerBorda(ballot, candidates=candidates_election,
... absent_receive_points=False, absent_give_points=False,
... unordered_receive_points=False).scores_as_floats_
{'a': 4.0, 'b': 2.5, 'c': 2.5, 'd': 0.0, 'e': 0.0, 'f': 0.0, 'g': 0.0}
>>> ScorerBorda(ballot, candidates=candidates_election,
... absent_receive_points=False, absent_give_points=False,
... unordered_receive_points=False, unordered_give_points=False).
→˓scores_as_floats_
{'a': 2.0, 'b': 0.5, 'c': 0.5, 'd': 0.0, 'e': 0.0, 'f': 0.0, 'g': 0.0}

Usage of None in the options:

>>> ScorerBorda(ballot, candidates=candidates_election,
... absent_receive_points=None, unordered_receive_points=None).scores_
→˓as_floats_
{'a': 6.0, 'b': 4.5, 'c': 4.5}

scores_as_floats_
The scores, given as floats. It is the same as scores_, but converted to floats.

Like all conversions to floats, it is advised to use this attribute for display purposes only. For computation,
you should always use scores_, which usually manipulates fractions and therefore allows for exact
computation.

Raises ValueError – If the scores cannot be converted to floats.

Type NiceDict

5.10.3 ScorerBucklin

class whalrus.ScorerBucklin(*args, k: int = 1, unordered_receive_points: Optional[bool] = True,
absent_receive_points: Optional[bool] = True, **kwargs)

Scorer for Bucklin’s rule.

Parameters

• args – Cf. parent class.

• k (int) – The number of points to distribute. Intuitively: the k candidates at the highest
ranks will receive 1 point each. In case of tie, some points may be divided between the tied
candidates (see below).

• unordered_receive_points (bool or None.) – Whether unordered candidates
should receive points (see below).

• absent_receive_points (bool or None.) – Whether absent candidates should
receive points (see below).

• kwargs – Cf. parent class.

Examples

Typical usage:
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>>> ScorerBucklin(BallotOrder('a > b > c > d > e'),
... candidates={'a', 'b', 'c', 'd', 'e'}, k=2).scores_
{'a': 1, 'b': 1, 'c': 0, 'd': 0, 'e': 0}

In the example below, candidates a, b and c are “ordered”, d and e are “unordered”, and f and g are “absent” in
the ballot, meaning that they were not even available when the voter cast her ballot. By default, we count as if
the unordered candidates were below the ordered candidates, and the absent candidates even lower:

>>> ballot = BallotOrder('a > b ~ c', candidates={'a', 'b', 'c', 'd', 'e'})
>>> candidates_election = {'a', 'b', 'c', 'd', 'e', 'f', 'g'}
>>> ScorerBucklin(ballot, candidates=candidates_election, k=2).scores_as_floats_
{'a': 1.0, 'b': 0.5, 'c': 0.5, 'd': 0.0, 'e': 0.0, 'f': 0.0, 'g': 0.0}
>>> ScorerBucklin(ballot, candidates=candidates_election, k=4).scores_as_floats_
{'a': 1.0, 'b': 1.0, 'c': 1.0, 'd': 0.5, 'e': 0.5, 'f': 0.0, 'g': 0.0}
>>> ScorerBucklin(ballot, candidates=candidates_election, k=6).scores_as_floats_
{'a': 1.0, 'b': 1.0, 'c': 1.0, 'd': 1.0, 'e': 1.0, 'f': 0.5, 'g': 0.5}

Using the options, unordered and/or absent candidates can always receive 0 point, or even not be mentioned in
the score dictionary at all:

>>> ScorerBucklin(ballot, candidates=candidates_election, k=6,
... unordered_receive_points=False, absent_receive_points=None).scores_
{'a': 1, 'b': 1, 'c': 1, 'd': 0, 'e': 0}

scores_as_floats_
The scores, given as floats. It is the same as scores_, but converted to floats.

Like all conversions to floats, it is advised to use this attribute for display purposes only. For computation,
you should always use scores_, which usually manipulates fractions and therefore allows for exact
computation.

Raises ValueError – If the scores cannot be converted to floats.

Type NiceDict

5.10.4 ScorerLevels

class whalrus.ScorerLevels(*args, level_ungraded: object = None, level_absent: object = None,
**kwargs)

A standard scorer for :class:BallotLevel.

Parameters

• args – Cf. parent class.

• level_ungraded (object) – The level of the scale used for ungraded candidates, or
None.

• level_absent (object) – The level of the scale used for absent candidates, or None.

• kwargs – Cf. parent class.

Examples

In the most general syntax, firstly, you define the scorer:

>>> scorer = ScorerLevels(level_absent=0)
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Secondly, you use it as a callable to load some particular arguments:

>>> scorer(ballot=BallotLevels({'a': 10, 'b': 7, 'c': 3}), voter='Alice',
... candidates={'a', 'b', 'c', 'd'}) # doctest:+ELLIPSIS
<... object at ...>

Finally, you can access the computed variables:

>>> scorer.scores_
{'a': 10, 'b': 7, 'c': 3, 'd': 0}

Later, if you wish, you can load other arguments (ballot, etc) with the same scorer, and so on.

Optionally, you can specify arguments as soon as the Scorer object is initialized. This allows for “one-liners”
such as:

>>> ScorerLevels(ballot=BallotLevels({'a': 10, 'b': 7, 'c': 3}), voter='Alice',
... candidates={'a', 'b', 'c', 'd'}, level_absent=0).scores_
{'a': 10, 'b': 7, 'c': 3, 'd': 0}

In the example below, candidates a, b and c are “ordered”, d is “unordered”, and e is “absent” in the ballot,
meaning that e were not even available when the voter cast her ballot. The options of the scorer provide different
ways to take these special cases into account:

>>> ballot=BallotLevels({'a': 10, 'b': 7, 'c': 3}, candidates={'a', 'b', 'c', 'd'}
→˓)
>>> candidates_election = {'a', 'b', 'c', 'd', 'e'}
>>> ScorerLevels(ballot, candidates=candidates_election).scores_
{'a': 10, 'b': 7, 'c': 3}
>>> ScorerLevels(ballot, candidates=candidates_election,
... level_ungraded=-5).scores_
{'a': 10, 'b': 7, 'c': 3, 'd': -5}
>>> ScorerLevels(ballot, candidates=candidates_election,
... level_ungraded=-5, level_absent=-10).scores_
{'a': 10, 'b': 7, 'c': 3, 'd': -5, 'e': -10}

scores_as_floats_
The scores, given as floats. It is the same as scores_, but converted to floats.

Like all conversions to floats, it is advised to use this attribute for display purposes only. For computation,
you should always use scores_, which usually manipulates fractions and therefore allows for exact
computation.

Raises ValueError – If the scores cannot be converted to floats.

Type NiceDict

5.10.5 ScorerPlurality

class whalrus.ScorerPlurality(*args, count_abstention: bool = False, **kwargs)
A Plurality scorer for BallotPlurality .

Parameters

• args – Cf. parent class.

• count_abstention (bool) – If False (default), then an abstention grants no score at
all. If True, then an abstention gives 0 point to each candidate (cf. below).

• kwargs – Cf. parent class.
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Examples

Typical usage:

>>> ScorerPlurality(BallotPlurality('a'), candidates={'a', 'b', 'c'}).scores_
{'a': 1, 'b': 0, 'c': 0}

Using the option count_abstention:

>>> ScorerPlurality(BallotPlurality(None), candidates={'a', 'b', 'c'}).scores_
{}
>>> ScorerPlurality(BallotPlurality(None), candidates={'a', 'b', 'c'},
... count_abstention=True).scores_
{'a': 0, 'b': 0, 'c': 0}

scores_as_floats_
The scores, given as floats. It is the same as scores_, but converted to floats.

Like all conversions to floats, it is advised to use this attribute for display purposes only. For computation,
you should always use scores_, which usually manipulates fractions and therefore allows for exact
computation.

Raises ValueError – If the scores cannot be converted to floats.

Type NiceDict

5.10.6 ScorerPositional

class whalrus.ScorerPositional(*args, points_scheme: list = None, points_fill: Op-
tional[numbers.Number] = 0, points_unordered: Op-
tional[numbers.Number] = 0, points_absent: Op-
tional[numbers.Number] = None, **kwargs)

A positional scorer for strict order ballots.

Parameters

• args – Cf. parent class.

• points_scheme (list) – The list of points to be attributed to the (first) candidates of a
ballot.

• points_fill (Number or None) – Points for ordered candidates that have a rank
beyond the points_scheme.

• points_unordered (Number or None) – Points for the unordered candidates.

• points_absent (Number or None) – Points for the absent candidates.

• kwargs – Cf. parent class.

Examples

The top candidate in the ballot receives points_scheme[0] points, the second one receives
points_scheme[1] points, etc:

>>> ScorerPositional(ballot=BallotOrder('a > b > c'), points_scheme=[10, 5, 3]).
→˓scores_
{'a': 10, 'b': 5, 'c': 3}
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The points scheme does not need to have the same length as the ballot:

>>> ScorerPositional(ballot=BallotOrder('a > b > c'), points_scheme=[3, 2, 1, .
→˓5]).scores_
{'a': 3, 'b': 2, 'c': 1}
>>> ScorerPositional(ballot=BallotOrder('a > b > c'), points_scheme=[3, 2]).
→˓scores_
{'a': 3, 'b': 2, 'c': 0}

A typical usage of this is k-Approval voting:

>>> ScorerPositional(ballot=BallotOrder('a > b > c > d > e'), points_scheme=[1,
→˓1]).scores_
{'a': 1, 'b': 1, 'c': 0, 'd': 0, 'e': 0}

In the example below, candidates a, b and c are “ordered”, d is “unordered”, and e is “absent” in the ballot,
meaning that e was not even available when the voter cast her ballot. The options of the scorer provide different
ways to take these special cases into account:

>>> ballot=BallotOrder('a > b > c', candidates={'a', 'b', 'c', 'd'})
>>> candidates_election = {'a', 'b', 'c', 'd', 'e'}
>>> ScorerPositional(ballot, candidates=candidates_election, points_scheme=[3,
→˓2]).scores_
{'a': 3, 'b': 2, 'c': 0, 'd': 0}
>>> ScorerPositional(ballot, candidates=candidates_election, points_scheme=[3, 2],
... points_fill=-1, points_unordered=-2, points_absent=-3).scores_
{'a': 3, 'b': 2, 'c': -1, 'd': -2, 'e': -3}
>>> ScorerPositional(ballot, candidates=candidates_election, points_scheme=[3, 2],
... points_fill=None, points_unordered=None, points_absent=None).scores_
{'a': 3, 'b': 2}

scores_as_floats_
The scores, given as floats. It is the same as scores_, but converted to floats.

Like all conversions to floats, it is advised to use this attribute for display purposes only. For computation,
you should always use scores_, which usually manipulates fractions and therefore allows for exact
computation.

Raises ValueError – If the scores cannot be converted to floats.

Type NiceDict

5.10.7 ScorerVeto

class whalrus.ScorerVeto(*args, count_abstention: bool = False, **kwargs)
A Veto scorer for BallotVeto.

Parameters

• args – Cf. parent class.

• count_abstention (bool) – If False (default), then an abstention grants no score at
all. If True, then an abstention gives 0 point to each candidate (cf. below).

• kwargs – Cf. parent class.
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Examples

Typical usage:

>>> ScorerVeto(BallotVeto('a'), candidates={'a', 'b', 'c'}).scores_
{'a': -1, 'b': 0, 'c': 0}

Using the option count_abstention:

>>> ScorerVeto(BallotVeto(None), candidates={'a', 'b', 'c'}).scores_
{}
>>> ScorerVeto(BallotVeto(None), candidates={'a', 'b', 'c'},
... count_abstention=True).scores_
{'a': 0, 'b': 0, 'c': 0}

scores_as_floats_
The scores, given as floats. It is the same as scores_, but converted to floats.

Like all conversions to floats, it is advised to use this attribute for display purposes only. For computation,
you should always use scores_, which usually manipulates fractions and therefore allows for exact
computation.

Raises ValueError – If the scores cannot be converted to floats.

Type NiceDict

5.11 Util Module

class whalrus.utils.utils.DeleteCacheMixin
Mixin used to delete cached properties.

Cf. decorator cached_property().

Examples

>>> class Example(DeleteCacheMixin):
... @cached_property
... def x(self):
... print('Big computation...')
... return 6 * 7
>>> a = Example()
>>> a.x
Big computation...
42
>>> a.x
42
>>> a.delete_cache()
>>> a.x
Big computation...
42

class whalrus.utils.utils.NiceDict
A dict that prints in the order of the keys (when they are comparable).
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Examples

>>> my_dict = NiceDict({'b': 51, 'a': 42, 'c': 12})
>>> my_dict
{'a': 42, 'b': 51, 'c': 12}

class whalrus.utils.utils.NiceSet
A set that prints in order (when the elements are comparable).

Examples

>>> my_set = NiceSet({'b', 'a', 'c'})
>>> my_set
{'a', 'b', 'c'}

whalrus.utils.utils.cached_property(f)
Decorator used in replacement of @property to put the value in cache automatically.

The first time the attribute is used, it is computed on-demand and put in cache. Later accesses to the attributes
will use the cached value.

Cf. DeleteCacheMixin for an example.

whalrus.utils.utils.convert_number(x: numbers.Number)
Try to convert a number to a fraction (or an integer).

Parameters x (Number) –

Returns x, trying to convert it into a fraction (or an integer).

Return type Number

Examples

>>> convert_number(2.5)
Fraction(5, 2)
>>> convert_number(2.0)
2

whalrus.utils.utils.dict_to_items(d: dict)→ list
Convert a dict to a list of pairs (key, value).

Parameters d (dict) –

Returns The result is similar to d.items(), but if the keys are comparable, they appear in ascending
order.

Return type list of pairs

Examples

>>> dict_to_items({'b': 2, 'c': 0, 'a': 1})
[('a', 1), ('b', 2), ('c', 0)]

whalrus.utils.utils.dict_to_str(d: dict)→ str
Convert dict to string.
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Parameters d (dict) –

Returns The result is similar to str(d), but if the keys are comparable, they appear in ascending
order.

Return type str

Examples

>>> dict_to_str({'b': 2, 'c': 0, 'a': 1})
"{'a': 1, 'b': 2, 'c': 0}"

whalrus.utils.utils.my_division(x: numbers.Number, y: numbers.Number, divide_by_zero:
numbers.Number = None)

Division of two numbers, trying to be exact if it is reasonable.

Parameters

• x (Number) –

• y (Number) –

• divide_by_zero (Number) – The value to be returned in case of division by zero. If
None (default), then it raises a ZeroDivisionError.

Returns The division of x by y.

Return type Number

Examples

>>> my_division(5, 2)
Fraction(5, 2)

If x or y is a float, then the result is a float:

>>> my_division(Fraction(5, 2), 0.1)
25.0
>>> my_division(0.1, Fraction(5, 2))
0.04

If x and y are integers, decimals or fractions, then the result is a fraction:

>>> my_division(2, Fraction(5, 2))
Fraction(4, 5)
>>> my_division(Decimal('0.1'), Fraction(5, 2))
Fraction(1, 25)

You can specify a particular return value in case of division by zero:

>>> my_division(1, 0, divide_by_zero=42)
42

whalrus.utils.utils.parse_weak_order(s: str)→ list
Convert a string representing a weak order to a list of sets.

Parameters s (str) –
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Returns A list of sets, where each set is an indifference class. The first set of the list contains the
top (= most liked) candidates, while the last set of the list contains the bottom (= most disliked)
candidates.

Return type list

Examples

>>> s = 'Alice ~ Bob ~ Catherine32 > me > you ~ us > them'
>>> parse_weak_order(s) == [{'Alice', 'Bob', 'Catherine32'}, {'me'}, {'you', 'us'}
→˓, {'them'}]
True

whalrus.utils.utils.set_to_list(s: set)→ list
Convert a set to a list.

Parameters s (set) –

Returns The result is similar to list(s), but if the elements of the set are comparable, they appear in
ascending order.

Return type list

Examples

>>> set_to_list({2, 42, 12})
[2, 12, 42]

whalrus.utils.utils.set_to_str(s: set)→ str
Convert a set to a string.

Parameters s (set) –

Returns The result is similar to str(s), but if the elements of the set are comparable, they appear in
ascending order.

Return type str

Examples

>>> set_to_str({2, 42, 12})
'{2, 12, 42}'

whalrus.utils.utils.take_closest(my_list, my_number)
In a list, take the closest element to a given number.

From https://stackoverflow.com/questions/12141150/from-list-of-integers-get-number-closest-to-a-given-value
.

Parameters

• my_list (list) – A list sorted in ascending order.

• my_number (Number) –

Returns The element of my_list that is closest to my_number. If two numbers are equally close,
return the smallest number.
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Return type Number

Examples

>>> take_closest([0, 5, 10], 3)
5
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CHAPTER 6

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

6.1 Types of Contributions

6.1.1 Report Bugs

Report bugs at https://github.com/francois-durand/whalrus/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

6.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

6.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.
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6.1.4 Write Documentation

Whalrus could always use more documentation, whether as part of the official Whalrus docs, in docstrings, or even on
the web in blog posts, articles, and such.

6.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/francois-durand/whalrus/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

6.2 Get Started!

Ready to contribute? Here’s how to set up whalrus for local development.

1. Fork the whalrus repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/whalrus.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv whalrus
$ cd whalrus/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 whalrus tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.
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6.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check https://travis-ci.org/
francois-durand/whalrus/pull_requests and make sure that the tests pass for all supported Python versions.

6.4 Tips

To run a subset of tests:

$ py.test tests.test_whalrus

6.5 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

6.6 Useful links

https://github.com/francois-durand/whalrus https://readthedocs.org/projects/whalrus/builds/

6.3. Pull Request Guidelines 139
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CHAPTER 7

Credits

7.1 Development Lead

• François Durand <fradurand@gmail.com>

7.2 Contributors

None yet. Why not be the first?
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CHAPTER 8

History

8.1 0.4.6 (2020-12-01): Improve test coverage

• Reach 100% of test coverage. Cf. https://codecov.io/gh/francois-durand/whalrus.

• Convert documentation to Numpy style. The documentation is not changed much in html format, but is more
readable in plain text.

• Remove hash function for BallotOneName and BallotOrder. It had a bug, and fixing it would have
implied to change all sets of candidates to frozen sets. Since this function is non-essential, we decided to
remove it instead.

• Fix bug in MatrixWeightedMajority when using the option ordered_vs_absent or
absent_vs_ordered.

• Fix bug in Rule.trailer_ when there is only one candidate in the election.

8.2 0.4.5 (2020-11-26): Fix Missing Files in Deployment

• Files from some sub-packages, such as scale, were missing. This release fixes that bug.

8.3 0.4.4 (2020-11-26): Fix PyPI deployment

• Fix PyPI deployment.

8.4 0.4.3 (2020-11-26): GitHub Actions

• This patch concerns Whalrus’ developpers only. To develop and maintain the package, it uses GitHub actions
instead of additional services such as Travis-CI and ReadTheDocs.
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• Use Codecov.

• Prepare support for Numpy documentation style (not used yet).

• Prepare support for notebooks in documentation (not used yet).

8.5 0.4.2 (2019-08-22): Speeding Up

• Minor patch to speed up the computation of the winner in some cases.

8.6 0.4.1 (2019-04-01): Tie-breaking

• Fix a bug related to random tie-break.

• In the arguments of class RuleRankedPairs, the tie-break can be given directly, instead of having to go
through the argument matrix.

8.7 0.4.0 (2019-03-29): Schulze

• Implement Schulze rule.

8.8 0.3.0 (2019-03-29): Ranked Pairs

• Implement Ranked Pairs rule.

8.9 0.2.1 (2019-03-28): Optimize argument passing

• Optimize argument passing between child classes, their parent classes and their __call__ function.

8.10 0.2.0 (2019-03-21): Classic voting systems

• First “real” release, where most classic voting systems are implemented.

8.11 0.1.0 (2018-03-13): First release

• First release on PyPI.
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CHAPTER 9

Indices and tables

• genindex

• modindex

• search
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Python Module Index

w
whalrus.utils.utils, 132
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Index

A
ABSTAIN (whalrus.Priority attribute), 50
append() (whalrus.Profile method), 59
argsort() (whalrus.Scale method), 114
argsort() (whalrus.ScaleFromList method), 116
argsort() (whalrus.ScaleFromSet method), 119
argsort() (whalrus.ScaleInterval method), 121
argsort() (whalrus.ScaleRange method), 123
as_array_ (whalrus.Matrix attribute), 43
as_array_ (whalrus.MatrixMajority attribute), 44
as_array_ (whalrus.MatrixWeightedMajority at-

tribute), 48
as_array_of_floats_ (whalrus.Matrix attribute),

43
as_array_of_floats_ (whalrus.MatrixMajority at-

tribute), 44
as_array_of_floats_ (whal-

rus.MatrixRankedPairs attribute), 45
as_array_of_floats_ (whalrus.MatrixSchulze at-

tribute), 46
as_array_of_floats_ (whal-

rus.MatrixWeightedMajority attribute), 49
as_dict (whalrus.BallotLevels attribute), 19
as_dict_ (whalrus.Matrix attribute), 43
as_strict_order (whalrus.BallotLevels attribute),

19
as_strict_order (whalrus.BallotOrder attribute),

15
as_weak_order (whalrus.BallotOrder attribute), 16
ASCENDING (whalrus.Priority attribute), 50
average_score_ (whalrus.RuleApproval attribute),

76
average_score_ (whalrus.RuleBorda attribute), 81
average_score_ (whalrus.RuleBucklinByRounds at-

tribute), 83
average_score_ (whalrus.RuleCopeland attribute),

90
average_score_ (whalrus.RuleKApproval attribute),

93

average_score_ (whalrus.RuleMaximin attribute),
98

average_score_ (whalrus.RulePlurality attribute),
101

average_score_ (whalrus.RuleRangeVoting at-
tribute), 104

average_score_ (whalrus.RuleRankedPairs at-
tribute), 106

average_score_ (whalrus.RuleScoreNum attribute),
66

average_score_ (whalrus.RuleScoreNumAverage at-
tribute), 67

average_score_ (whalrus.RuleScoreNumRowSum
attribute), 69

average_score_ (whalrus.RuleScorePositional at-
tribute), 71

average_score_ (whalrus.RuleSimplifiedDodgson
attribute), 109

average_score_ (whalrus.RuleVeto attribute), 113
average_score_as_float_ (whal-

rus.RuleApproval attribute), 76
average_score_as_float_ (whalrus.RuleBorda

attribute), 81
average_score_as_float_ (whal-

rus.RuleBucklinByRounds attribute), 83
average_score_as_float_ (whal-

rus.RuleCopeland attribute), 90
average_score_as_float_ (whal-

rus.RuleKApproval attribute), 93
average_score_as_float_ (whal-

rus.RuleMaximin attribute), 98
average_score_as_float_ (whal-

rus.RulePlurality attribute), 102
average_score_as_float_ (whal-

rus.RuleRangeVoting attribute), 104
average_score_as_float_ (whal-

rus.RuleRankedPairs attribute), 106
average_score_as_float_ (whal-

rus.RuleScoreNum attribute), 66
average_score_as_float_ (whal-
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rus.RuleScoreNumAverage attribute), 68
average_score_as_float_ (whal-

rus.RuleScoreNumRowSum attribute), 69
average_score_as_float_ (whal-

rus.RuleScorePositional attribute), 71
average_score_as_float_ (whal-

rus.RuleSimplifiedDodgson attribute), 109
average_score_as_float_ (whalrus.RuleVeto at-

tribute), 113

B
Ballot (class in whalrus), 13
ballot_ (whalrus.Scorer attribute), 125
BallotLevels (class in whalrus), 19
BallotOneName (class in whalrus), 23
BallotOrder (class in whalrus), 14
BallotPlurality (class in whalrus), 25
ballots (whalrus.Profile attribute), 59
BallotVeto (class in whalrus), 28
best_score_ (whalrus.RuleBucklinInstant attribute),

86
best_score_ (whalrus.RuleMajorityJudgment at-

tribute), 97
best_score_ (whalrus.RuleScore attribute), 65
best_score_as_float_ (whalrus.RuleApproval at-

tribute), 76
best_score_as_float_ (whalrus.RuleBorda at-

tribute), 81
best_score_as_float_ (whal-

rus.RuleBucklinByRounds attribute), 83
best_score_as_float_ (whalrus.RuleCopeland

attribute), 90
best_score_as_float_ (whalrus.RuleKApproval

attribute), 93
best_score_as_float_ (whalrus.RuleMaximin at-

tribute), 99
best_score_as_float_ (whalrus.RulePlurality at-

tribute), 102
best_score_as_float_ (whalrus.RuleRangeVoting

attribute), 104
best_score_as_float_ (whalrus.RuleRankedPairs

attribute), 106
best_score_as_float_ (whalrus.RuleScoreNum

attribute), 66
best_score_as_float_ (whal-

rus.RuleScoreNumAverage attribute), 68
best_score_as_float_ (whal-

rus.RuleScoreNumRowSum attribute), 69
best_score_as_float_ (whal-

rus.RuleScorePositional attribute), 71
best_score_as_float_ (whal-

rus.RuleSimplifiedDodgson attribute), 109
best_score_as_float_ (whalrus.RuleVeto at-

tribute), 113

C
cached_property() (in module whalrus.utils.utils),

133
candidates (whalrus.Ballot attribute), 13
candidates (whalrus.BallotLevels attribute), 20
candidates (whalrus.BallotOrder attribute), 16
candidates_ (whalrus.Matrix attribute), 43
candidates_ (whalrus.Rule attribute), 61
candidates_ (whalrus.Scorer attribute), 125
candidates_as_list_ (whalrus.Matrix attribute),

43
candidates_as_list_ (whal-

rus.MatrixWeightedMajority attribute), 49
candidates_in_b (whalrus.BallotOneName at-

tribute), 23
candidates_in_b (whalrus.BallotOrder attribute),

16
candidates_in_b (whalrus.BallotPlurality at-

tribute), 26
candidates_in_b (whalrus.BallotVeto attribute), 28
candidates_indexes_ (whalrus.Matrix attribute),

43
candidates_indexes_ (whal-

rus.MatrixWeightedMajority attribute), 49
candidates_not_in_b (whalrus.BallotLevels at-

tribute), 20
candidates_not_in_b (whalrus.BallotOneName

attribute), 24
candidates_not_in_b (whalrus.BallotOrder

attribute), 16
candidates_not_in_b (whalrus.BallotPlurality at-

tribute), 26
candidates_not_in_b (whalrus.BallotVeto at-

tribute), 28
choice() (whalrus.Priority method), 50
choice() (whalrus.PriorityAbstain method), 51
choice() (whalrus.PriorityAscending method), 52
choice() (whalrus.PriorityDescending method), 54
choice() (whalrus.PriorityRandom method), 55
choice() (whalrus.PriorityUnambiguous method), 56
compare() (whalrus.Priority method), 50
compare() (whalrus.PriorityAbstain method), 52
compare() (whalrus.PriorityAscending method), 53
compare() (whalrus.PriorityDescending method), 54
compare() (whalrus.PriorityRandom method), 55
compare() (whalrus.PriorityUnambiguous method),

57
compare() (whalrus.Scale method), 115
compare() (whalrus.ScaleFromList method), 117
compare() (whalrus.ScaleFromSet method), 119
compare() (whalrus.ScaleInterval method), 121
compare() (whalrus.ScaleRange method), 123
compare_scores() (whalrus.RuleApproval method),

76
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compare_scores() (whalrus.RuleBorda method), 81
compare_scores() (whalrus.RuleBucklinByRounds

method), 83
compare_scores() (whalrus.RuleBucklinInstant

method), 86
compare_scores() (whalrus.RuleCopeland

method), 90
compare_scores() (whalrus.RuleKApproval

method), 93
compare_scores() (whalrus.RuleMajorityJudgment

method), 97
compare_scores() (whalrus.RuleMaximin method),

99
compare_scores() (whalrus.RulePlurality method),

102
compare_scores() (whalrus.RuleRangeVoting

method), 104
compare_scores() (whalrus.RuleRankedPairs

method), 106
compare_scores() (whalrus.RuleScore method), 65
compare_scores() (whalrus.RuleScoreNum

method), 66
compare_scores() (whalrus.RuleScoreNumAverage

method), 68
compare_scores() (whal-

rus.RuleScoreNumRowSum method), 69
compare_scores() (whalrus.RuleScorePositional

method), 71
compare_scores() (whal-

rus.RuleSimplifiedDodgson method), 109
compare_scores() (whalrus.RuleVeto method), 113
convert_number() (in module whalrus.utils.utils),

133
ConverterBallot (class in whalrus), 29
ConverterBallotGeneral (class in whalrus), 29
ConverterBallotToGrades (class in whalrus), 30
ConverterBallotToLevels (class in whalrus), 31
ConverterBallotToLevelsInterval (class in

whalrus), 32
ConverterBallotToLevelsListNonNumeric

(class in whalrus), 33
ConverterBallotToLevelsListNumeric (class

in whalrus), 34
ConverterBallotToLevelsRange (class in whal-

rus), 35
ConverterBallotToOrder (class in whalrus), 36
ConverterBallotToPlurality (class in whal-

rus), 37
ConverterBallotToStrictOrder (class in whal-

rus), 38
ConverterBallotToVeto (class in whalrus), 38
cotrailers_ (whalrus.Rule attribute), 62
cotrailers_ (whalrus.RuleApproval attribute), 77
cotrailers_ (whalrus.RuleBaldwin attribute), 78

cotrailers_ (whalrus.RuleBlack attribute), 79
cotrailers_ (whalrus.RuleBorda attribute), 81
cotrailers_ (whalrus.RuleBucklinByRounds at-

tribute), 84
cotrailers_ (whalrus.RuleBucklinInstant attribute),

86
cotrailers_ (whalrus.RuleCondorcet attribute), 88
cotrailers_ (whalrus.RuleCoombs attribute), 89
cotrailers_ (whalrus.RuleCopeland attribute), 90
cotrailers_ (whalrus.RuleIRV attribute), 92
cotrailers_ (whalrus.RuleIteratedElimination at-

tribute), 64
cotrailers_ (whalrus.RuleKApproval attribute), 93
cotrailers_ (whalrus.RuleKimRoush attribute), 95
cotrailers_ (whalrus.RuleMajorityJudgment at-

tribute), 97
cotrailers_ (whalrus.RuleMaximin attribute), 99
cotrailers_ (whalrus.RuleNanson attribute), 100
cotrailers_ (whalrus.RulePlurality attribute), 102
cotrailers_ (whalrus.RuleRangeVoting attribute),

104
cotrailers_ (whalrus.RuleRankedPairs attribute),

106
cotrailers_ (whalrus.RuleSchulze attribute), 108
cotrailers_ (whalrus.RuleScore attribute), 65
cotrailers_ (whalrus.RuleScoreNum attribute), 66
cotrailers_ (whalrus.RuleScoreNumAverage at-

tribute), 68
cotrailers_ (whalrus.RuleScoreNumRowSum

attribute), 70
cotrailers_ (whalrus.RuleScorePositional attribute),

71
cotrailers_ (whalrus.RuleSequentialElimination at-

tribute), 73
cotrailers_ (whalrus.RuleSequentialTieBreak

attribute), 75
cotrailers_ (whalrus.RuleSimplifiedDodgson

attribute), 109
cotrailers_ (whalrus.RuleTwoRound attribute), 111
cotrailers_ (whalrus.RuleVeto attribute), 113
cowinners_ (whalrus.Rule attribute), 62
cowinners_ (whalrus.RuleApproval attribute), 77
cowinners_ (whalrus.RuleBaldwin attribute), 78
cowinners_ (whalrus.RuleBlack attribute), 79
cowinners_ (whalrus.RuleBorda attribute), 81
cowinners_ (whalrus.RuleBucklinByRounds at-

tribute), 84
cowinners_ (whalrus.RuleBucklinInstant attribute),

86
cowinners_ (whalrus.RuleCondorcet attribute), 88
cowinners_ (whalrus.RuleCoombs attribute), 89
cowinners_ (whalrus.RuleCopeland attribute), 90
cowinners_ (whalrus.RuleIRV attribute), 92
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cowinners_ (whalrus.RuleIteratedElimination at-
tribute), 64

cowinners_ (whalrus.RuleKApproval attribute), 94
cowinners_ (whalrus.RuleKimRoush attribute), 95
cowinners_ (whalrus.RuleMajorityJudgment at-

tribute), 97
cowinners_ (whalrus.RuleMaximin attribute), 99
cowinners_ (whalrus.RuleNanson attribute), 100
cowinners_ (whalrus.RulePlurality attribute), 102
cowinners_ (whalrus.RuleRangeVoting attribute), 104
cowinners_ (whalrus.RuleRankedPairs attribute), 106
cowinners_ (whalrus.RuleSchulze attribute), 108
cowinners_ (whalrus.RuleScore attribute), 65
cowinners_ (whalrus.RuleScoreNum attribute), 66
cowinners_ (whalrus.RuleScoreNumAverage at-

tribute), 68
cowinners_ (whalrus.RuleScoreNumRowSum at-

tribute), 70
cowinners_ (whalrus.RuleScorePositional attribute),

71
cowinners_ (whalrus.RuleSequentialElimination at-

tribute), 74
cowinners_ (whalrus.RuleSequentialTieBreak at-

tribute), 75
cowinners_ (whalrus.RuleSimplifiedDodgson at-

tribute), 109
cowinners_ (whalrus.RuleTwoRound attribute), 111
cowinners_ (whalrus.RuleVeto attribute), 113

D
DeleteCacheMixin (class in whalrus.utils.utils), 132
DESCENDING (whalrus.Priority attribute), 50
detailed_scores_ (whalrus.RuleBucklinByRounds

attribute), 84
detailed_scores_as_floats_ (whal-

rus.RuleBucklinByRounds attribute), 84
dict_to_items() (in module whalrus.utils.utils),

133
dict_to_str() (in module whalrus.utils.utils), 133

E
edges_order_ (whalrus.MatrixRankedPairs at-

tribute), 45
eliminated_ (whalrus.Elimination attribute), 39
eliminated_ (whalrus.EliminationBelowAverage at-

tribute), 40
eliminated_ (whalrus.EliminationLast attribute), 42
eliminated_order_ (whalrus.Elimination at-

tribute), 40
Elimination (class in whalrus), 39
elimination_rounds_ (whal-

rus.RuleSequentialElimination attribute),
74

elimination_rounds_ (whalrus.RuleTwoRound at-
tribute), 111

EliminationBelowAverage (class in whalrus), 40
EliminationLast (class in whalrus), 41
eliminations_ (whalrus.RuleBaldwin attribute), 78
eliminations_ (whalrus.RuleCoombs attribute), 89
eliminations_ (whalrus.RuleIRV attribute), 92
eliminations_ (whalrus.RuleIteratedElimination at-

tribute), 64
eliminations_ (whalrus.RuleKimRoush attribute),

95
eliminations_ (whalrus.RuleNanson attribute), 100
eq() (whalrus.Scale method), 115
eq() (whalrus.ScaleFromList method), 117
eq() (whalrus.ScaleFromSet method), 119
eq() (whalrus.ScaleInterval method), 121
eq() (whalrus.ScaleRange method), 123

F
final_round_ (whalrus.RuleSequentialElimination

attribute), 74
final_round_ (whalrus.RuleTwoRound attribute),

111
first() (whalrus.Ballot method), 13
first() (whalrus.BallotLevels method), 20
first() (whalrus.BallotOneName method), 24
first() (whalrus.BallotOrder method), 16
first() (whalrus.BallotPlurality method), 26
first() (whalrus.BallotVeto method), 28
first_round_ (whalrus.RuleTwoRound attribute),

111

G
ge() (whalrus.Scale method), 115
ge() (whalrus.ScaleFromList method), 117
ge() (whalrus.ScaleFromSet method), 119
ge() (whalrus.ScaleInterval method), 121
ge() (whalrus.ScaleRange method), 123
gross_ (whalrus.MatrixWeightedMajority attribute), 49
gross_scores_ (whalrus.RuleApproval attribute), 77
gross_scores_ (whalrus.RuleBorda attribute), 81
gross_scores_ (whalrus.RuleKApproval attribute),

94
gross_scores_ (whalrus.RuleRangeVoting attribute),

104
gross_scores_ (whalrus.RuleScoreNumAverage at-

tribute), 68
gross_scores_ (whalrus.RuleScorePositional at-

tribute), 71
gross_scores_as_floats_ (whal-

rus.RuleApproval attribute), 77
gross_scores_as_floats_ (whalrus.RuleBorda

attribute), 82
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gross_scores_as_floats_ (whal-
rus.RuleKApproval attribute), 94

gross_scores_as_floats_ (whal-
rus.RulePlurality attribute), 102

gross_scores_as_floats_ (whal-
rus.RuleRangeVoting attribute), 104

gross_scores_as_floats_ (whal-
rus.RuleScoreNumAverage attribute), 68

gross_scores_as_floats_ (whal-
rus.RuleScorePositional attribute), 72

gross_scores_as_floats_ (whalrus.RuleVeto at-
tribute), 113

gt() (whalrus.Scale method), 115
gt() (whalrus.ScaleFromList method), 117
gt() (whalrus.ScaleFromSet method), 119
gt() (whalrus.ScaleInterval method), 121
gt() (whalrus.ScaleRange method), 123

H
has_voters (whalrus.Profile attribute), 59
has_weights (whalrus.Profile attribute), 59
high (whalrus.Scale attribute), 115
high (whalrus.ScaleFromList attribute), 117
high (whalrus.ScaleFromSet attribute), 119
high (whalrus.ScaleInterval attribute), 121
high (whalrus.ScaleRange attribute), 123

I
is_strict (whalrus.BallotLevels attribute), 21
is_strict (whalrus.BallotOrder attribute), 17
items() (whalrus.BallotLevels method), 21
items() (whalrus.Profile method), 60

K
keys() (whalrus.BallotLevels method), 21

L
last() (whalrus.Ballot method), 14
last() (whalrus.BallotLevels method), 22
last() (whalrus.BallotOneName method), 24
last() (whalrus.BallotOrder method), 17
last() (whalrus.BallotPlurality method), 27
last() (whalrus.BallotVeto method), 28
le() (whalrus.Scale method), 115
le() (whalrus.ScaleFromList method), 117
le() (whalrus.ScaleFromSet method), 119
le() (whalrus.ScaleInterval method), 121
le() (whalrus.ScaleRange method), 124
low (whalrus.Scale attribute), 115
low (whalrus.ScaleFromList attribute), 117
low (whalrus.ScaleFromSet attribute), 119
low (whalrus.ScaleInterval attribute), 121
low (whalrus.ScaleRange attribute), 124

lt() (whalrus.Scale method), 115
lt() (whalrus.ScaleFromList method), 117
lt() (whalrus.ScaleFromSet method), 120
lt() (whalrus.ScaleInterval method), 122
lt() (whalrus.ScaleRange method), 124

M
Matrix (class in whalrus), 42
matrix_ (whalrus.RuleCopeland attribute), 91
matrix_ (whalrus.RuleRankedPairs attribute), 106
matrix_ (whalrus.RuleScoreNumRowSum attribute),

70
matrix_majority_ (whalrus.RuleCondorcet at-

tribute), 88
matrix_majority_ (whalrus.RuleCopeland at-

tribute), 91
matrix_ranked_pairs_ (whalrus.RuleRankedPairs

attribute), 106
matrix_schulze_ (whalrus.RuleSchulze attribute),

108
matrix_weighted_majority_ (whal-

rus.MatrixMajority attribute), 44
matrix_weighted_majority_ (whal-

rus.MatrixRankedPairs attribute), 45
matrix_weighted_majority_ (whal-

rus.MatrixSchulze attribute), 46
matrix_weighted_majority_ (whal-

rus.RuleMaximin attribute), 99
matrix_weighted_majority_ (whal-

rus.RuleSimplifiedDodgson attribute), 110
MatrixMajority (class in whalrus), 43
MatrixRankedPairs (class in whalrus), 44
MatrixSchulze (class in whalrus), 45
MatrixWeightedMajority (class in whalrus), 46
max() (whalrus.Scale method), 116
max() (whalrus.ScaleFromList method), 117
max() (whalrus.ScaleFromSet method), 120
max() (whalrus.ScaleInterval method), 122
max() (whalrus.ScaleRange method), 124
min() (whalrus.Scale method), 116
min() (whalrus.ScaleFromList method), 118
min() (whalrus.ScaleFromSet method), 120
min() (whalrus.ScaleInterval method), 122
min() (whalrus.ScaleRange method), 124
my_division() (in module whalrus.utils.utils), 134

N
n_candidates_ (whalrus.Rule attribute), 62
n_candidates_ (whalrus.RuleApproval attribute), 77
n_candidates_ (whalrus.RuleBaldwin attribute), 78
n_candidates_ (whalrus.RuleBlack attribute), 80
n_candidates_ (whalrus.RuleBorda attribute), 82
n_candidates_ (whalrus.RuleBucklinByRounds at-

tribute), 84
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n_candidates_ (whalrus.RuleBucklinInstant at-
tribute), 86

n_candidates_ (whalrus.RuleCondorcet attribute),
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n_candidates_ (whalrus.RuleCoombs attribute), 89
n_candidates_ (whalrus.RuleCopeland attribute), 91
n_candidates_ (whalrus.RuleIRV attribute), 92
n_candidates_ (whalrus.RuleIteratedElimination at-

tribute), 64
n_candidates_ (whalrus.RuleKApproval attribute),
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n_candidates_ (whalrus.RuleKimRoush attribute),
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n_candidates_ (whalrus.RuleMajorityJudgment at-

tribute), 97
n_candidates_ (whalrus.RuleMaximin attribute), 99
n_candidates_ (whalrus.RuleNanson attribute), 100
n_candidates_ (whalrus.RulePlurality attribute),
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n_candidates_ (whalrus.RuleRangeVoting attribute),

105
n_candidates_ (whalrus.RuleRankedPairs attribute),

107
n_candidates_ (whalrus.RuleSchulze attribute), 108
n_candidates_ (whalrus.RuleScore attribute), 65
n_candidates_ (whalrus.RuleScoreNum attribute),

66
n_candidates_ (whalrus.RuleScoreNumAverage at-

tribute), 68
n_candidates_ (whalrus.RuleScoreNumRowSum at-

tribute), 70
n_candidates_ (whalrus.RuleScorePositional at-

tribute), 72
n_candidates_ (whalrus.RuleSequentialElimination

attribute), 74
n_candidates_ (whalrus.RuleSequentialTieBreak at-

tribute), 75
n_candidates_ (whalrus.RuleSimplifiedDodgson at-

tribute), 110
n_candidates_ (whalrus.RuleTwoRound attribute),

111
n_candidates_ (whalrus.RuleVeto attribute), 113
n_rounds_ (whalrus.RuleBucklinByRounds attribute),
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ne() (whalrus.Scale method), 116
ne() (whalrus.ScaleFromList method), 118
ne() (whalrus.ScaleFromSet method), 120
ne() (whalrus.ScaleInterval method), 122
ne() (whalrus.ScaleRange method), 124
NiceDict (class in whalrus.utils.utils), 132
NiceSet (class in whalrus.utils.utils), 133

O
order_ (whalrus.Rule attribute), 62

order_ (whalrus.RuleBucklinInstant attribute), 86
order_ (whalrus.RuleMajorityJudgment attribute), 97
order_ (whalrus.RuleScore attribute), 65

P
parse_weak_order() (in module whal-

rus.utils.utils), 134
Priority (class in whalrus), 50
PriorityAbstain (class in whalrus), 51
PriorityAscending (class in whalrus), 52
PriorityDescending (class in whalrus), 54
PriorityRandom (class in whalrus), 55
PriorityUnambiguous (class in whalrus), 56
Profile (class in whalrus), 57
profile_converted_ (whalrus.Matrix attribute), 42
profile_converted_ (whalrus.Rule attribute), 61
profile_original_ (whalrus.Matrix attribute), 42
profile_original_ (whalrus.Rule attribute), 61

Q
qualified_ (whalrus.Elimination attribute), 40
qualified_ (whalrus.EliminationBelowAverage at-

tribute), 40
qualified_ (whalrus.EliminationLast attribute), 42

R
RANDOM (whalrus.Priority attribute), 50
remove() (whalrus.Profile method), 60
restrict() (whalrus.Ballot method), 14
restrict() (whalrus.BallotLevels method), 22
restrict() (whalrus.BallotOneName method), 25
restrict() (whalrus.BallotOrder method), 18
restrict() (whalrus.BallotPlurality method), 27
restrict() (whalrus.BallotVeto method), 29
rounds_ (whalrus.RuleSequentialElimination at-

tribute), 74
rounds_ (whalrus.RuleTwoRound attribute), 112
Rule (class in whalrus), 61
rule_ (whalrus.Elimination attribute), 39
rule_borda_ (whalrus.RuleBlack attribute), 80
rule_condorcet_ (whalrus.RuleBlack attribute), 80
RuleApproval (class in whalrus), 76
RuleBaldwin (class in whalrus), 78
RuleBlack (class in whalrus), 79
RuleBorda (class in whalrus), 81
RuleBucklinByRounds (class in whalrus), 83
RuleBucklinInstant (class in whalrus), 85
RuleCondorcet (class in whalrus), 87
RuleCoombs (class in whalrus), 88
RuleCopeland (class in whalrus), 90
RuleIRV (class in whalrus), 91
RuleIteratedElimination (class in whalrus), 62
RuleKApproval (class in whalrus), 93
RuleKimRoush (class in whalrus), 95

154 Index



Whalrus Documentation, Release 0.4.6

RuleMajorityJudgment (class in whalrus), 96
RuleMaximin (class in whalrus), 98
RuleNanson (class in whalrus), 100
RulePlurality (class in whalrus), 101
RuleRangeVoting (class in whalrus), 103
RuleRankedPairs (class in whalrus), 105
rules_ (whalrus.RuleBlack attribute), 80
rules_ (whalrus.RuleSequentialTieBreak attribute), 75
RuleSchulze (class in whalrus), 107
RuleScore (class in whalrus), 65
RuleScoreNum (class in whalrus), 66
RuleScoreNumAverage (class in whalrus), 67
RuleScoreNumRowSum (class in whalrus), 69
RuleScorePositional (class in whalrus), 70
RuleSequentialElimination (class in whalrus),

72
RuleSequentialTieBreak (class in whalrus), 75
RuleSimplifiedDodgson (class in whalrus), 108
RuleTwoRound (class in whalrus), 110
RuleVeto (class in whalrus), 112

S
Scale (class in whalrus), 114
ScaleFromList (class in whalrus), 116
ScaleFromSet (class in whalrus), 118
ScaleInterval (class in whalrus), 120
ScaleRange (class in whalrus), 123
Scorer (class in whalrus), 125
ScorerBorda (class in whalrus), 126
ScorerBucklin (class in whalrus), 127
ScorerLevels (class in whalrus), 128
ScorerPlurality (class in whalrus), 129
ScorerPositional (class in whalrus), 130
ScorerVeto (class in whalrus), 131
scores_ (whalrus.RuleBucklinByRounds attribute), 84
scores_ (whalrus.RuleMajorityJudgment attribute), 97
scores_ (whalrus.RuleScore attribute), 65
scores_ (whalrus.RuleScoreNum attribute), 67
scores_ (whalrus.Scorer attribute), 125
scores_as_floats_ (whalrus.RuleApproval at-

tribute), 77
scores_as_floats_ (whalrus.RuleBorda attribute),

82
scores_as_floats_ (whal-

rus.RuleBucklinByRounds attribute), 84
scores_as_floats_ (whalrus.RuleBucklinInstant

attribute), 86
scores_as_floats_ (whalrus.RuleCopeland at-

tribute), 91
scores_as_floats_ (whalrus.RuleKApproval at-

tribute), 94
scores_as_floats_ (whal-

rus.RuleMajorityJudgment attribute), 97

scores_as_floats_ (whalrus.RuleMaximin at-
tribute), 99

scores_as_floats_ (whalrus.RulePlurality at-
tribute), 102

scores_as_floats_ (whalrus.RuleRangeVoting at-
tribute), 105

scores_as_floats_ (whalrus.RuleRankedPairs at-
tribute), 107

scores_as_floats_ (whalrus.RuleScoreNum
attribute), 67

scores_as_floats_ (whal-
rus.RuleScoreNumAverage attribute), 68

scores_as_floats_ (whal-
rus.RuleScoreNumRowSum attribute), 70

scores_as_floats_ (whalrus.RuleScorePositional
attribute), 72

scores_as_floats_ (whal-
rus.RuleSimplifiedDodgson attribute), 110

scores_as_floats_ (whalrus.RuleVeto attribute),
113

scores_as_floats_ (whalrus.Scorer attribute), 125
scores_as_floats_ (whalrus.ScorerBorda at-

tribute), 127
scores_as_floats_ (whalrus.ScorerBucklin at-

tribute), 128
scores_as_floats_ (whalrus.ScorerLevels at-

tribute), 129
scores_as_floats_ (whalrus.ScorerPlurality at-

tribute), 130
scores_as_floats_ (whalrus.ScorerPositional at-

tribute), 131
scores_as_floats_ (whalrus.ScorerVeto attribute),

132
second_round_ (whalrus.RuleTwoRound attribute),

112
set_to_list() (in module whalrus.utils.utils), 135
set_to_str() (in module whalrus.utils.utils), 135
sort() (whalrus.Priority method), 51
sort() (whalrus.PriorityAbstain method), 52
sort() (whalrus.PriorityAscending method), 53
sort() (whalrus.PriorityDescending method), 54
sort() (whalrus.PriorityRandom method), 55
sort() (whalrus.PriorityUnambiguous method), 57
sort() (whalrus.Scale method), 116
sort() (whalrus.ScaleFromList method), 118
sort() (whalrus.ScaleFromSet method), 120
sort() (whalrus.ScaleInterval method), 122
sort() (whalrus.ScaleRange method), 124
sort_pairs_rp() (whalrus.Priority method), 51
sort_pairs_rp() (whalrus.PriorityAbstain method),

52
sort_pairs_rp() (whalrus.PriorityAscending

method), 53
sort_pairs_rp() (whalrus.PriorityDescending

Index 155



Whalrus Documentation, Release 0.4.6

method), 54
sort_pairs_rp() (whalrus.PriorityRandom

method), 56
sort_pairs_rp() (whalrus.PriorityUnambiguous

method), 57
strict_order_ (whalrus.Rule attribute), 62
strict_order_ (whalrus.RuleApproval attribute), 77
strict_order_ (whalrus.RuleBaldwin attribute), 78
strict_order_ (whalrus.RuleBlack attribute), 80
strict_order_ (whalrus.RuleBorda attribute), 82
strict_order_ (whalrus.RuleBucklinByRounds at-

tribute), 84
strict_order_ (whalrus.RuleBucklinInstant at-

tribute), 87
strict_order_ (whalrus.RuleCondorcet attribute),

88
strict_order_ (whalrus.RuleCoombs attribute), 89
strict_order_ (whalrus.RuleCopeland attribute), 91
strict_order_ (whalrus.RuleIRV attribute), 92
strict_order_ (whalrus.RuleIteratedElimination at-

tribute), 64
strict_order_ (whalrus.RuleKApproval attribute),

94
strict_order_ (whalrus.RuleKimRoush attribute),

95
strict_order_ (whalrus.RuleMajorityJudgment at-

tribute), 97
strict_order_ (whalrus.RuleMaximin attribute), 99
strict_order_ (whalrus.RuleNanson attribute), 100
strict_order_ (whalrus.RulePlurality attribute),

102
strict_order_ (whalrus.RuleRangeVoting attribute),

105
strict_order_ (whalrus.RuleRankedPairs attribute),

107
strict_order_ (whalrus.RuleSchulze attribute), 108
strict_order_ (whalrus.RuleScore attribute), 65
strict_order_ (whalrus.RuleScoreNum attribute),

67
strict_order_ (whalrus.RuleScoreNumAverage at-

tribute), 68
strict_order_ (whalrus.RuleScoreNumRowSum at-

tribute), 70
strict_order_ (whalrus.RuleScorePositional at-

tribute), 72
strict_order_ (whalrus.RuleSequentialElimination

attribute), 74
strict_order_ (whalrus.RuleSequentialTieBreak at-

tribute), 75
strict_order_ (whalrus.RuleSimplifiedDodgson at-

tribute), 110
strict_order_ (whalrus.RuleTwoRound attribute),

112
strict_order_ (whalrus.RuleVeto attribute), 113

T
take_closest() (in module whalrus.utils.utils), 135
trailer_ (whalrus.Rule attribute), 62
trailer_ (whalrus.RuleApproval attribute), 77
trailer_ (whalrus.RuleBaldwin attribute), 79
trailer_ (whalrus.RuleBlack attribute), 80
trailer_ (whalrus.RuleBorda attribute), 82
trailer_ (whalrus.RuleBucklinByRounds attribute),

84
trailer_ (whalrus.RuleBucklinInstant attribute), 87
trailer_ (whalrus.RuleCondorcet attribute), 88
trailer_ (whalrus.RuleCoombs attribute), 89
trailer_ (whalrus.RuleCopeland attribute), 91
trailer_ (whalrus.RuleIRV attribute), 93
trailer_ (whalrus.RuleIteratedElimination attribute),

64
trailer_ (whalrus.RuleKApproval attribute), 94
trailer_ (whalrus.RuleKimRoush attribute), 95
trailer_ (whalrus.RuleMajorityJudgment attribute),

98
trailer_ (whalrus.RuleMaximin attribute), 99
trailer_ (whalrus.RuleNanson attribute), 101
trailer_ (whalrus.RulePlurality attribute), 102
trailer_ (whalrus.RuleRangeVoting attribute), 105
trailer_ (whalrus.RuleRankedPairs attribute), 107
trailer_ (whalrus.RuleSchulze attribute), 108
trailer_ (whalrus.RuleScore attribute), 65
trailer_ (whalrus.RuleScoreNum attribute), 67
trailer_ (whalrus.RuleScoreNumAverage attribute),

68
trailer_ (whalrus.RuleScoreNumRowSum attribute),

70
trailer_ (whalrus.RuleScorePositional attribute), 72
trailer_ (whalrus.RuleSequentialElimination at-

tribute), 74
trailer_ (whalrus.RuleSequentialTieBreak attribute),

75
trailer_ (whalrus.RuleSimplifiedDodgson attribute),

110
trailer_ (whalrus.RuleTwoRound attribute), 112
trailer_ (whalrus.RuleVeto attribute), 113

U
UNAMBIGUOUS (whalrus.Priority attribute), 50

V
values() (whalrus.BallotLevels method), 23
voter_ (whalrus.Scorer attribute), 125
voters (whalrus.Profile attribute), 60

W
weights (whalrus.Profile attribute), 61
weights_ (whalrus.MatrixWeightedMajority attribute),

49

156 Index



Whalrus Documentation, Release 0.4.6

weights_ (whalrus.RuleApproval attribute), 77
weights_ (whalrus.RuleBorda attribute), 82
weights_ (whalrus.RuleKApproval attribute), 94
weights_ (whalrus.RuleRangeVoting attribute), 105
weights_ (whalrus.RuleScoreNumAverage attribute),

69
weights_ (whalrus.RuleScorePositional attribute), 72
weights_as_floats_ (whalrus.RuleApproval at-

tribute), 77
weights_as_floats_ (whalrus.RuleBorda at-

tribute), 82
weights_as_floats_ (whalrus.RuleKApproval at-

tribute), 94
weights_as_floats_ (whalrus.RulePlurality

attribute), 102
weights_as_floats_ (whalrus.RuleRangeVoting

attribute), 105
weights_as_floats_ (whal-

rus.RuleScoreNumAverage attribute), 69
weights_as_floats_ (whalrus.RuleScorePositional

attribute), 72
weights_as_floats_ (whalrus.RuleVeto attribute),

114
whalrus.utils.utils (module), 132
winner_ (whalrus.Rule attribute), 62
winner_ (whalrus.RuleApproval attribute), 77
winner_ (whalrus.RuleBaldwin attribute), 79
winner_ (whalrus.RuleBlack attribute), 80
winner_ (whalrus.RuleBorda attribute), 82
winner_ (whalrus.RuleBucklinByRounds attribute), 85
winner_ (whalrus.RuleBucklinInstant attribute), 87
winner_ (whalrus.RuleCondorcet attribute), 88
winner_ (whalrus.RuleCoombs attribute), 89
winner_ (whalrus.RuleCopeland attribute), 91
winner_ (whalrus.RuleIRV attribute), 93
winner_ (whalrus.RuleIteratedElimination attribute),

64
winner_ (whalrus.RuleKApproval attribute), 94
winner_ (whalrus.RuleKimRoush attribute), 96
winner_ (whalrus.RuleMajorityJudgment attribute), 98
winner_ (whalrus.RuleMaximin attribute), 99
winner_ (whalrus.RuleNanson attribute), 101
winner_ (whalrus.RulePlurality attribute), 103
winner_ (whalrus.RuleRangeVoting attribute), 105
winner_ (whalrus.RuleRankedPairs attribute), 107
winner_ (whalrus.RuleSchulze attribute), 108
winner_ (whalrus.RuleScore attribute), 66
winner_ (whalrus.RuleScoreNum attribute), 67
winner_ (whalrus.RuleScoreNumAverage attribute), 69
winner_ (whalrus.RuleScoreNumRowSum attribute),

70
winner_ (whalrus.RuleScorePositional attribute), 72
winner_ (whalrus.RuleSequentialElimination at-

tribute), 74

winner_ (whalrus.RuleSequentialTieBreak attribute),
76

winner_ (whalrus.RuleSimplifiedDodgson attribute),
110

winner_ (whalrus.RuleTwoRound attribute), 112
winner_ (whalrus.RuleVeto attribute), 114
worst_score_ (whalrus.RuleBucklinInstant at-

tribute), 87
worst_score_ (whalrus.RuleMajorityJudgment at-

tribute), 98
worst_score_ (whalrus.RuleScore attribute), 66
worst_score_as_float_ (whalrus.RuleApproval

attribute), 77
worst_score_as_float_ (whalrus.RuleBorda at-

tribute), 82
worst_score_as_float_ (whal-

rus.RuleBucklinByRounds attribute), 85
worst_score_as_float_ (whalrus.RuleCopeland

attribute), 91
worst_score_as_float_ (whalrus.RuleKApproval

attribute), 94
worst_score_as_float_ (whalrus.RuleMaximin

attribute), 99
worst_score_as_float_ (whalrus.RulePlurality

attribute), 103
worst_score_as_float_ (whal-

rus.RuleRangeVoting attribute), 105
worst_score_as_float_ (whal-

rus.RuleRankedPairs attribute), 107
worst_score_as_float_ (whalrus.RuleScoreNum

attribute), 67
worst_score_as_float_ (whal-

rus.RuleScoreNumAverage attribute), 69
worst_score_as_float_ (whal-

rus.RuleScoreNumRowSum attribute), 70
worst_score_as_float_ (whal-

rus.RuleScorePositional attribute), 72
worst_score_as_float_ (whal-

rus.RuleSimplifiedDodgson attribute), 110
worst_score_as_float_ (whalrus.RuleVeto

attribute), 114

Index 157


	Whalrus
	Features
	Credits

	Installation
	Stable release
	From sources

	Usage
	Tutorial
	Quick start
	Computed attributes of an election
	General syntax
	Under the hood
	Change the candidates

	Reference
	Ballot
	ConverterBallot
	Elimination
	Matrix
	Priority
	Profile
	Rule: In General
	Rule: In Particular
	Scale
	Scorer
	Util Module

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips
	Deploying
	Useful links

	Credits
	Development Lead
	Contributors

	History
	0.4.6 (2020-12-01): Improve test coverage
	0.4.5 (2020-11-26): Fix Missing Files in Deployment
	0.4.4 (2020-11-26): Fix PyPI deployment
	0.4.3 (2020-11-26): GitHub Actions
	0.4.2 (2019-08-22): Speeding Up
	0.4.1 (2019-04-01): Tie-breaking
	0.4.0 (2019-03-29): Schulze
	0.3.0 (2019-03-29): Ranked Pairs
	0.2.1 (2019-03-28): Optimize argument passing
	0.2.0 (2019-03-21): Classic voting systems
	0.1.0 (2018-03-13): First release

	Indices and tables
	Python Module Index
	Index

